SLIDE RULE

With scales similar to the POLYPHASE, but with folded scales DF and CF, and with trigonometric scales T, ST, and S all related to the C and D scales, and divided to represent degrees and decimals of a degree.

BY

LYMAN M. KELLS, Ph.D.
Professor Emeritus of Mathematics

WILLIS F. KERN
Formerly Associate Professor of Mathematics

AND

JAMES R. BLAND
Professor of Mathematics

All at the United States Naval Academy

PUBLISHED BY

KEUFFEL & ESSER CO.

Drafting, Reproduction, Surveying,
Optical Tooling
Equipment and Materials,
Slide Rules, Measuring Tapes.

NEW YORK : HOBOKEN, N. J.
DETROIT • CHICAGO • MILWAUKEE • ST. LOUIS • DALLAS
SAN FRANCISCO • LOS ANGELES • SEATTLE • MONTREAL
PREFACE

This slide rule manual has been written for study without the aid of a teacher. For this reason one might suspect that the treatment is superficial. On the contrary, the subject matter is so presented that the beginner uses two general principles while he is learning to read the scales and perform the simpler operations. The mastery of these two principles gives the power to devise the best settings for any particular purpose, and to recall settings which have been forgotten.

These principles are so simple and so carefully explained and illustrated both by diagram and by example that they are easily mastered. In Chapter II, they are applied to simple problems in multiplication and division; in Chapters III and IV they are used to solve problems involving multiplication, division, square and cube root, trigonometry, and logarithms.

Chapter V explains the slide rule from the logarithmic standpoint. Those who desire a theoretical treatment are likely to be surprised to find that the principles of the slide rule are so easily understood in terms of logarithms.
CHAPTER V
LOGARITHMS AND THE SLIDE RULE

43. Construction of the D scale. 74
44. Accuracy. .. 75
45. Multiplication and division. 76
46. The inverted scales 77
47. The A scale and the K scale 78
48. The trigonometric scales 81

Historical note .. 82
Answers .. 85
Index .. 91

CHAPTER I
MULTIPLICATION AND DIVISION

1. Introduction. This manual is designed to enable any interested person to learn to use the slide rule efficiently. The beginner should keep his slide rule before him while reading the manual, should make all settings indicated in the illustrative examples, and should compute answers for a large number of the exercises. The principles involved are easily understood but a certain amount of practice is required to enable one to use the slide rule efficiently and with a minimum of error.

2. Reading the scales.* Everyone has read a ruler in measuring a length. The number of inches is shown by a number appearing on the ruler, then small divisions are counted to get the number of 16th's of an inch in the fractional part of the inch, and finally in close measurement, a fraction of a 16th of an inch may be estimated. We first read a primary length, then a secondary length, and finally estimate a tertiary length. Exactly the same method is used in reading the slide rule. The divisions on the slide rule are not uniform in length, but the same principle applies.

Figure 1 represents, in skeleton form, the fundamental scale of the slide rule, namely the D scale. An examination of this actual

![Figure 1](image)

scale on the slide rule will show that it is divided into 9 parts by primary marks which are numbered 1, 2, 3, ..., 9, 1. The space between any two primary marks is divided into ten parts by nine secondary marks. These are not numbered on the actual scale except

*The description here given has reference to the 10" slide rule. However anyone having a rule of different length will be able to understand his rule in the light of the explanation given.
between the primary marks numbered 1 and 2. Fig. 2 shows the secondary marks lying between the primary marks of the D scale. On this scale each italicized number gives the reading to be associated with its corresponding secondary mark. Thus, the first secondary mark after 2 is numbered 21, the second 22, the third 23, etc.; the first secondary mark after 3 is numbered 31, the second 32, etc. Between the primary marks numbered 1 and 2 the secondary marks are numbered 1, 2, ..., 9. Evidently the readings associated with these marks are 11, 12, 13, ..., 19. Finally between the secondary marks, see Fig. 3, appear smaller or tertiary marks which aid in obtaining the third digit of a reading. Thus between the secondary marks numbered 22 and 23 there are 4 tertiary marks. If we think of the end marks as representing 220 and 230, the four tertiary marks divide the interval into five parts each representing 2 units. Hence with these marks we associate the numbers 222, 224, 226, and 228; similarly the tertiary marks between the secondary marks numbered 32 and 33 are read 322, 324, 326, and 328, and the tertiary marks between the primary marks numbered 3 and the first succeeding secondary mark are read 302, 304, 306, and 308. Between any pair of secondary marks to the right of the primary mark numbered 4, there is only one tertiary mark. Hence, each smallest space represents five units. Thus the tertiary mark between the secondary marks representing 41 and 42 is read 415, that between the secondary marks representing 55 and 56 is read 555, and the first tertiary mark to the right of the primary mark numbered 4 is read 405.

The reading of any position between a pair of successive tertiary marks must be based on an estimate. Thus a position half way between the tertiary marks associated with 222 and 224 is read 223 and a position two fifths of the way from the tertiary mark numbered 415 to the next mark is read 417. The principle illustrated by these readings applies in all cases.

Consider the process of finding on the D scale the position representing 246. The first figure on the left, namely 2, tells us that the position lies between the primary marks numbered 2 and 3. This region is indicated by the brace in Fig. (a). The second figure from the left, namely 4, tells us that the position lies between the secondary marks associated with 24 and 25. This region is indicated by the brace in Fig. (b). Now there are 4 marks between the secondary marks associated with 24 and 25. With these are associated the numbers 242, 244, 246, and 248 respectively. Thus the position representing 246 is indicated by the arrow in Fig. (c). Fig. (abc) gives a condensed summary of the process.

It is important to note that the decimal point has no bearing upon the position associated with a number on the C and D scales. Consequently, the arrow in Fig. (abc) may represent 246, 2.46, 0.00246, 24,600, or any other number whose principal digits are 2, 4, 6. The placing of the decimal point will be explained later in this chapter.

For a position between the primary marks numbered 1 and 2, four digits should be read; the first three will be exact and the last one
MULTIPLICATION AND DIVISION

estimated. No attempt should be made to read more than three digits for positions to the right of the primary mark numbered 4.*

While making a reading, the learner should have definitely in mind the number associated with the smallest space under consideration. Thus between 1 and 2, the smallest division is associated with 10 in the fourth place; between 2 and 3, the smallest division has a value 2 in the third place; while to the right of 4, the smallest division has a value 5 in the third place.

The learner should read from Fig. 4 the numbers associated with the marks lettered A, B, C, ... and compare his readings with the following numbers: A 365, B 327, C 263, D 1745, E 1347, F 305, G 207, H 1078, I 485, J 427.

3. Accuracy of the slide rule. From the discussion of § 2 it appears that we read four figures of a result on one part of the scale and three figures on the remaining part. Assuming that the error of a reading is one tenth of the smallest interval following the left-hand index of D, we conclude that the error is roughly 1 in 1000 or one tenth of one per cent. The effect of the assumed error in judging a distance is inversely proportional to the length of the rule. Hence we associate with a 10-inch slide rule an error of one tenth of one per cent, with a 20-inch slide rule an error of one twentieth of one per cent or 1 part in 2000, and with the Thacher Cylindrical slide rule an error of a hundredth of one per cent or one part in 10,000. The accuracy obtainable with

*Answers read between 2 and 4 on the C scale or D scale contain four significant figures, the last one being zero or five. Hence such answers have the fourth significant digit accurate to the nearest five.

the 10-inch slide rule is sufficient for many practical purposes; in any case the slide rule result serves as a check.

4. Definitions. The central sliding part of the rule is called the slide, the other part the body. The glass runner is called the indicator and the line on the indicator is referred to as the hairline.

The mark associated with the primary number 1 on any scale is called the index of the scale. An examination of the D scale shows that it has two indices, one at the left end and the other at the right end.

Two positions on different scales are said to be opposite if, without moving the slide, the hairline may be brought to cover both positions at the same time.

5. Multiplication. The process of multiplication may be performed by using scales C and D. The C scale is on the slide, but in other respects it is like the D scale and is read in the same manner.

To multiply 2 by 4,

to 2 on D set index of C,
push hairline to 4 on C,
at the hairline read 8 on D.

Fig. 5.

Fig. 5 shows the rule in skeleton form set for multiplying 2 by 4. To multiply 3 × 3,

to 3 on D set index of C,
push hairline to 3 on C,
at the hairline read 9 on D.

See Fig. 6 for the setting in skeleton form.

Fig. 6.
To Multiply 1.5×3.5, disregard the decimal point and to 15 on D set index of C, push hairline to 35 on C, at the hairline read 525 on D.

By inspection we know that the answer is near to 5 and is therefore 5.25.

To find the value of 16.75×2.83 (see Fig. 7)

![Fig. 7.](image)

disregard the decimal point and
to 1675 on D set index of C,
push hairline to 283 on C,
at the hairline read 474 on D.

To place the decimal point we approximate the answer by noting that it is near to $3 \times 16 = 48$. Hence the answer is 47.4.

To find the value of 0.001753×12.17,
to 1753 on D set left index of C,
push hairline to 1217 on C,
at the hairline read 2135 on D.

To place the decimal point, approximate the answer by writing $0.002 \times 10 = .02$. Hence the answer is 0.02135.

These examples illustrate the use of the following rule.

Rule. To find the product of two numbers, disregard the decimal points, opposite either of the numbers on the D scale set the index of the C scale, push the hairline of the indicator to the second number on the C scale, and read the answer under the hairline on the D scale. The decimal point is placed in accordance with the result of a rough calculation.

EXERCISES

1. 3×2.
2. 3.5×2.
3. 5×2.
4. 2×4.55.
5. 4.5×1.5.
6. 1.75×5.5.
7. 4.33×11.5.
8. 2.03×167.3.
9. 1.536×30.6.
10. 0.0756×1.093.
11. 1.047×3080.
12. 0.00209×408.
13. $(3.142)^2$.
14. $(1.756)^3$.

EXERCISES

Perform the indicated multiplications.

1. 3×5.
2. 3.05×5.17.
3. 5.56×634.
4. 7.43×0.0567.
5. 0.0495×0.0267.
6. 1.876×926.
7. 1.876×53.2.
8. 42.3×31.7.
9. 912×0.267.
10. 48.7×1.173.
11. 0.298×0.544.
12. 0.0466×4.40.
13. 8640×0.01973.
14. $(75.0)^2$.
15. $(83.0)^2$.
16. 4.98×576.

7. Division

The process of division is performed by using the C and D scales.

To divide 8 by 4 (see Fig. 8), push hairline to 8 on D, draw 4 of C under the hairline, opposite index of C read 2 on D.

6. Either index may be used. It may happen that a product cannot be read when the left index of the C scale is used in the rule of §5. This will be due to the fact that the second number of the product is on the part of the slide projecting beyond the body. In this case reset the slide using the right index of the C scale in place of the left, or use the following rule:

Rule. When a number is to be read on the D scale opposite a number of the C scale and cannot be read, push the hairline to the index of the C scale inside the body and draw the other index of the C scale under the hairline. Then make the desired reading.

This rule, slightly modified to apply to the scales being used, is generally applicable when an operation calls for setting the hairline to a position on the part of the slide extending beyond the body.

If, to find the product of 2 and 6, we set the left index of the C scale opposite 2 on the D scale, we cannot read the answer on the D scale opposite 6 on the C scale. Hence, we set the right index of C opposite 2 on D; opposite 6 on C read the answer, 12, on D.

Again, to find 0.0314×564,
to 314 on D set the right index of C,
push hairline to 564 on C,
at the hairline read 1771 on D.

A rough approximation is obtained by finding $0.03 \times 600 = 18$. Hence the product is 17.71.

EXERCISES

Perform the indicated multiplications.

1. 3×5.
2. 3.05×5.17.
3. 5.56×634.
4. 7.43×0.0567.
5. 0.0495×0.0267.
6. 1.876×926.
7. 1.876×53.2.
8. 42.3×31.7.
9. 912×0.267.
10. 48.7×1.173.
11. 0.298×0.544.
12. 0.0466×4.40.
13. 8640×0.01973.
14. $(75.0)^2$.
15. $(83.0)^2$.
16. 4.98×576.
To divide 876 by 20.4,
push hairline to 876 on D,
draw 204 of C under the hairline,
opposite index of C read 429 on D.

The rough calculation 800 ÷ 20 = 40 shows that the decimal point must be placed after the 2. Hence the answer is 42.9.

These examples illustrate the use of the following rule.

Rule. To find the quotient of two numbers, disregard the decimal points, opposite the numerator on the D scale set the denominator on the C scale, opposite the index of the C scale read the quotient on the D scale. The position of the decimal point is determined from information gained by making a rough calculation.

EXERCISES

Perform the indicated operations.

1. 87.5 ÷ 37.7.
2. 3.75 ÷ 0.0227.
3. 0.685 ÷ 8.93.
4. 1029 ÷ 9.70.
5. 0.00377 + 5.29.
6. 2875 ÷ 37.1.
7. 871 ÷ 0.468.
8. 0.0385 ÷ 0.001462.
9. 3.14 ÷ 2.72.
10. 3.42 ÷ 81.7.
11. 829 ÷ 565.
12. 0.0456 ÷ 0.0297.
13. 3.96 ÷ 0.943.
14. 0.0592 ÷ 1.883.
15. 0.375 ÷ 0.0782.
16. 10.05 ÷ 30.3.

8. Simple applications, percentage, rates. Many problems involving percentage and rates are easily solved by means of the slide rule.

One per cent (1%) of a number N is $N \times 1/100$; hence 5% of N is $N \times 5/100$, and, in general, $p\%$ of N is $pN/100$. Hence to find 83% of 1872

to 1872 on D set right index of C,
push hairline to 83 on C,
at the hairline read 1554 on D.

Since $(83/100) \times 1872$ is approximately $\frac{80}{100} \times 2000 = 1600$, the answer is 1554.

To find the answer to the question "M is what per cent of N?" we must find $100 \frac{M}{N}$. Thus, to find the answer to the question "87 is what per cent of 184.7?" we must divide $87 \times 100 = 8700$ by 184.7. Hence

push hairline to 87 on D,
draw 1847 of C under the hairline,
opposite index of C read 471 on D.

The rough calculation $\frac{9000}{200} = 45$ shows that the decimal point should be placed after the 7. Hence the answer is 47.1%.

For a body moving with a constant velocity, distance = rate times time. Hence if we write d for distance, r for rate, and t for time, we have

$$d = rt, \text{ or } r = \frac{d}{t}, \text{ or } t = \frac{d}{r}.$$

To find the distance traveled by a car going 33.7 miles per hour for 7.75 hours, write $d = 33.7 \times 7.75$, and

to 337 on D set right index of C,
push hairline to 775 on C,
at hairline read 261 on D.

Since the answer is near to $8 \times 30 = 240$ miles, we have $d = 261$ miles.

To find the average rate at which a driver must travel to cover 287 miles in 8.75 hours, write $r = 287 \div 8.75$, and

push hairline to 287 on D,
draw 875 of C under the hairline,
opposite the index of C read 328 on D.

Since the rate is near $280 \div 10 = 28$, we have $r = 32.8$ miles per hour.

EXERCISES

1. Find (a) 86.3 per cent of 1826.
 (b) 75.2 per cent of 3.46.
 (c) 18.3 per cent of 28.7.
 (d) 0.95 per cent of 483.
2. What per cent of
 \(a\) 69 is 18?
 \(b\) 132 is 85?
 \(c\) 87.6 is 192.8?
 \(d\) 1027 is 28?

3. Find the distance covered by a body moving
 \(a\) 23.7 miles per hour for 7.55 hours.
 \(b\) 68.3 miles per hour for 1.773 hours.
 \(c\) 128.7 miles per hour for 16.65 hours.

4. At what rate must a body move to cover
 \(a\) 100 yards in 10.85 seconds.
 \(b\) 386 feet in 25.7 seconds.
 \(c\) 33,000,000 miles in 8 minutes and 20 seconds.

5. Find the time required to move
 \(a\) 100 yards at 9.87 yards per second.
 \(b\) 3800 miles at 128.7 miles per hour.
 \(c\) 25,000 miles at 77.5 miles per hour.

9. Use of the scales \(DF\) and \(CF\) (folded scales). The \(DF\) and
the \(CF\) scales are the same as the \(D\) and the \(C\) scales respectively
except in the position of their indices. The fundamental fact
concerning the folded scales may be stated as follows: if for any setting
of the slide, a number \(M\) of the \(C\) scale is opposite a number \(N\) on
the \(D\) scale, then the number \(M\) of the \(CF\) scale is opposite the number \(N\)
on the \(DF\) scale. Thus, if the learner will draw 1 of the \(CF\) scale
opposite 1.5 on the \(DF\) scale, he will find the following opposites on
the \(CF\) and \(DF\) scales:

<table>
<thead>
<tr>
<th>(CF)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>6.67</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DF)</td>
<td>1.5</td>
<td>3</td>
<td>6</td>
<td>7.5</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

and the same opposites will appear on the \(C\) and \(D\) scales.

The following statement relating to the folded scales is basic. The
process of setting the hairline to a number \(N\) on scale \(C\) to find its
opposite \(M\) on scale \(D\) may be replaced by setting the hairline to \(N\)
on scale \(CF\) to find its opposite \(M\) on scale \(DF\). The statement holds
true if letters \(C\) and \(D\) are interchanged.

In accordance with the principle stated above, if the operator
wishes to read a number on the \(D\) scale opposite a number \(N\) on the
\(C\) scale but cannot do so, he can generally read the required number
on the \(DF\) scale opposite \(N\) on the \(CF\) scale. For example to find
\(2 \times 6\),

\[\text{to 2 on } D\text{ set left index of } C,\]
\[\text{push hairline to 6 on } CF,\]
\[\text{at the hairline read 12 on } DF.\]

By using the \(CF\) and \(DF\) scales we saved the trouble of moving the
slide as well as the attendant source of error. This saving, entering
as it does in many ways, is a main reason for using the folded scales.

The folded scales may be used to perform multiplications and
divisions just as the \(C\) and \(D\) scales are used. Thus to find \(6.17 \times 7.34\),

\[\text{to 617 on } DF\text{ set index of } CF,\]
\[\text{push hairline to 734 on } CF,\]
\[\text{at the hairline read 45.3 on } DF;\]
or

\[\text{to 617 on } DF\text{ set index of } CF,\]
\[\text{push hairline to 734 on } C,\]
\[\text{at the hairline read 45.3 on } D.\]

Again to find the quotient \(7.68/8.43\),

\[\text{push hairline to 768 on } DF,\]
\[\text{draw 843 of } CF\text{ under the hairline,}\]
\[\text{opposite the index of } CF\text{ read 0.911 on } DF;\]
or

\[\text{push hairline to 768 on } DF,\]
\[\text{draw 843 of } CF\text{ under the hairline,}\]
\[\text{opposite the index of } C\text{ read 0.911 on } D.\]

It now appears that we may perform a multiplication or a division
in several ways by using two or more of the scales \(C, D, CF\), and \(DF\).
The sentence written in italics near the beginning of the article sets
forth the guiding principle.

A convenient method of multiplying or dividing a number by
\(\pi \approx 3.14\) approx.) is based on the statement: any number on \(DF\) is
\(\pi\) times its opposite on \(D\); and any number on \(D\) is \(1/\pi\) times its opposite
on \(DF\). For example, to find the value of \(4\pi\),

\[\text{push hairline to 4 on } D,\]
\[\text{at hairline read on } DF, \frac{12.57}{4};\]

\[\text{to find the value of } \frac{3}{\pi}\]
\[\text{push hairline to 3 on } DF,\]
\[\text{at hairline read on } D, \frac{0.955}{3} = \frac{3}{\pi}.\]
EXERCISES

Perform each of the operations indicated in the following exercises. Whenever possible without resetting, read the answer on D and also on DF.

1. \(5.78 \times 6.35\).
2. \(7.54 \times 1.065\).
3. \(0.00405 + 73.6\).
4. \(0.0034 \times 53,600\).
5. \(1.769 \div 496\).
6. \(946 \div 0.0677\).
7. \(813 \times 1.951\).
8. \(0.00775 + 0.338\).
9. \(0.0948 \div 7.23\).
10. \(149.0 \div 63.3\).
11. \(2.718 + 65.7\).
12. \(783 \pi\).
13. \(783 + \pi\).
14. \(0.0878 \pi\).
15. \(0.504 \div \pi\).
16. \(1.072 \div 10.97\).

17. The circumference of a circle measures 8.43 inches. Find its diameter.

18. A cylindrical tube is 13 inches long and has an outside diameter of 2\(\pi\) inches. Find its outside surface area.

CHAPTER II

THE PROPORTION PRINCIPLE AND COMBINED OPERATIONS

10. Introduction. The ratio of two numbers \(a\) and \(b\) is the quotient of \(a\) divided by \(b\) or \(a/b\). A statement of equality between two ratios is called a proportion. Thus

\[
\frac{2}{3} = \frac{6}{9}, \quad \frac{x}{y} = \frac{7}{11}, \quad \frac{a}{b} = \frac{c}{d}
\]

are proportions. We shall at times refer to equations having such forms as

\[
\frac{2}{3} = \frac{x}{5} = \frac{9}{y}, \quad \text{and} \quad \frac{a}{b} = \frac{c}{d} = \frac{e}{f}
\]

as proportions.

An important setting like the one for multiplication, the one for division, and any other one that the operator will use frequently should be practiced until it is made without thought. But, in the process of devising the best settings to obtain a particular result, of making a setting used infrequently, or of recalling a forgotten setting, the application of proportions as explained in the next article is very useful.

11. Use of Proportions. If the slide is drawn to any position, the ratio of any number on the D scale to its opposite on the C scale is, in accordance with the setting for division, equal to the number on the D scale opposite the index on the C scale. In other words, when the slide is set in any position, the ratio of any number on the D scale to its opposite on the C scale is the same as the ratio of any other number on the D scale to its opposite on the C scale. For example:

![Diagram]

FIG. 1.
draw 1 of C opposite 2 on D (see Fig. 1) and find the opposites indicated in the following table:

<table>
<thead>
<tr>
<th>C (or CF)</th>
<th>1</th>
<th>1.5</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (or DF)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

and draw 2 of C over 1 on D and read the same opposites. The same statement is true if in it we replace C by CF scale and D scale by DF scale. Hence, if both numerator n and denominator d of a ratio in a given proportion are known, we can set n of the C scale opposite d on the D scale and then read, for an equal ratio having one part known, its unknown part opposite the known part. We could also begin by setting d on the C scale opposite n on the D scale. It is important to observe that all the numerators of a series of equal ratios must appear on one scale and the denominators on the other. For example, let it be required to find the value of z satisfying

\[
\frac{x}{y} = \frac{9}{7}.
\]

Here the known ratio is 9/7. Hence

- push hairline to 7 on D,
- draw 9 of C under the hairline,
- push hairline to 56 on D,
- at the hairline read 2 on C.

or

- push hairline to 9 on D,
- draw 7 of C under the hairline,
- push hairline to 56 on C,
- at the hairline read 2 on D.

The CF and DF scales could have been used to obtain exactly the same settings and results. Figure 2 indicates the setting.

![Fig. 2](image-url)

To find the values of x, y, and z defined by the equations

\[
\begin{align*}
C : 3.15 & \quad x = 57.6 \\
D : 5.29 & \quad y = 183.4
\end{align*}
\]

Note that C and D indicate the respective scales for the numerators and the denominators, observe that 3.15/5.29 is the known ratio, and

- push hairline to 529 on D,
- draw 315 of C under the hairline;
- opposite 435 on D, read \(x = 2.59 \) on C;
- opposite 576 on C, read \(y = 96.7 \) on D;
- opposite 1834 on D, read \(z = 109.2 \) on C.

The positions of the decimal points were determined by noticing that each denominator had to be somewhat less than twice its associated numerator because 5.29 is somewhat less than twice 3.15.

When an answer cannot be read, apply the italicized rule of §6. Thus to find the values of x and y satisfying

\[
\frac{C}{D} : \quad \frac{x}{y} = \frac{14.56}{57.8} = \frac{1456}{578.2}
\]

to 976 on D set 1456 of C; then, since the answers cannot be read, push the hairline to the index on C, draw the right index of C under the hairline and

- opposite 587 on D, read \(x = 87.6 \) on C;
- opposite 578 on C, read \(y = 38.75 \) on D.

Here the positions of the decimal points were determined by observing that each denominator had to be about six times the associated numerator.

When a result cannot be read on the C scale nor on the D scale it may be possible to read it on the CF scale or on the DF scale. Thus, to find x and y satisfying the equations

\[
\begin{align*}
C (or CF) : 4.92 & \quad \frac{1}{x} = \frac{y}{3.23} = 13.08
\end{align*}
\]

to 323 on D set left index of C;
- opposite 492 on CF, read \(x = 15.89 \) on DF;
- opposite 1308 on DF, read \(y = 4.05 \) on CF.

A slight inspection of the scales will show the value of the statement: If the difference of the first digits of the two numbers of the known ratio is small use the C and D scales for the initial setting; if the difference is large use the CF and DF scales. Since in the next
to the last example, the difference between the first digits was great, the \(CP \) and \(DF \) scales should have been used for the initial setting. This would have eliminated the necessity for shifting the slide.

EXERCISES

Find, in each of the following equations, the values of the unknowns.

1. \(\frac{x}{5} = \frac{78}{9} \).
2. \(\frac{x}{120} = \frac{240}{170} \).
3. \(\frac{7}{8} = \frac{249}{x} \).
4. \(\frac{2}{3} = \frac{x}{783} \).
5. \(\frac{x}{1.864} = \frac{y}{25} = \frac{1}{0.786} \).
6. \(\frac{x}{709} = \frac{246}{y} = \frac{28}{384} \).
7. \(\frac{17}{x} = \frac{1.365}{8.53} = \frac{4.86}{y} \).
8. \(\frac{8.51}{1.5} = \frac{9}{x} = \frac{235}{y} \).
9. \(\frac{x}{2.07} = \frac{3}{61.3} = \frac{z}{1.871} \).
10. \(\frac{x}{0.204} = \frac{y}{0.0506} = \frac{5.28}{z} = \frac{2.01}{0.1034} \).
11. \(\frac{0.813}{2.85} = \frac{x}{y} = \frac{0.435}{4.61} \).
12. \(\frac{x}{0.429} = \frac{y}{0.789} = \frac{2.43}{0.0276} \).
13. \(\frac{0.00356}{0.00560} = \frac{x}{1} = \frac{0.743}{y} = \frac{0.0615}{1} \).
14. \(\frac{x}{y} = \frac{3.75}{7.34} = \frac{29.7}{y} \).
15. \(\frac{x}{49.6} = \frac{z}{y} = \frac{1.076}{3.58} = \frac{0.287}{29.7} \).

§12] FORMING PROPORTIONS FROM EQUATIONS

12. Forming proportions from equations. Since proportions are algebraic equations, they may be rearranged in accordance with the laws of algebra. For example, if

\[
x = \frac{ab}{c},
\]

we may write the proportion

\[
\frac{x}{1} = \frac{ab}{c},
\]

or we may divide both sides by \(a \) to get

\[
\frac{x}{a} = \frac{b}{ac}, \text{ or } \frac{a}{c} = \frac{x}{b},
\]

or we may multiply both sides by \(c/x \) to obtain

\[
\frac{cx}{x} = \frac{cab}{xc}, \text{ or } \frac{x}{1} = \frac{ab}{c}.
\]

Rule (A). A number may be divided by 1 to form a ratio. This was done in obtaining proportion (2).

Rule (B). A factor of the numerator of either ratio of a proportion may be replaced by 1 and written as a factor of the denominator of the other ratio, and a factor of the denominator of either ratio may be replaced by 1 and written as a factor of the numerator of the other ratio. Thus (3) could have been obtained from (1) by transferring \(a \) from the numerator of the right hand ratio to the denominator of the left hand ratio.

For example, to find \(\frac{16 \times 28}{35} \), write \(x = \frac{16 \times 28}{35} \), apply Rule (B) to obtain

\[
\frac{C}{D} = \frac{28}{16} = \frac{35}{x},
\]

and push hairline to 35 on \(D \),
draw 28 of \(C \) under the hairline;
opposite 16 on \(D \), read \(x = 12.8 \) on \(C \).

Figure 3 indicates the setting.
To recall the rule for dividing a given number \(M \) by a second given number \(N \), write \(x = \frac{M}{N} \), apply Rule (A) to obtain \(\frac{D}{C} : \frac{x}{1} = \frac{M}{N} \), and push hairline to \(M \) on \(D \), draw \(N \) of \(C \) under the hairline; opposite index of \(C \), read \(x \) on \(D \).

To recall the rule for multiplication, set \(x = \frac{MN}{1} \), apply Rule (B) to obtain \(\frac{D}{C} : \frac{x}{M} = \frac{N}{1} \), and to \(N \) on \(D \) set index of \(C \); opposite \(M \) on \(C \), read \(x \) on \(D \).

To find \(x \) if \(\frac{1}{x} = \frac{864}{(7.48)(25.5)} \), use Rule (B) to get \(\frac{7.48}{x} = \frac{864}{25.5} \). Make the corresponding setting and read \(x = 0.221 \). The position of the decimal point was determined by observing that \(x \) must be about \(\frac{1}{40} \) of 8, or 0.2.

EXERCISES

Find in each case the value of the unknown quantity.

1. \(y = \frac{8 \times 12}{7} \)
2. \(x = \frac{9y}{28} \)
3. \(8y = 7.56 \times 9 \)
4. \(y = \frac{86 \times 70.8}{125} \)
5. \(y = \frac{147.5 \times 8.76}{3200} \)
6. \(y = \frac{0.797 \times 5.96}{0.502} \)
7. \(y = \frac{37 \times 86}{y} = 75.7 \)
8. \(498 = \frac{89.2x}{0.563} \)
9. \(0.874 = \frac{3.95 \times x}{0.707} \)
10. \(0.695 = \frac{0.0679}{x} \)
11. \(\frac{1}{366} = \frac{0.772}{x} \)
12. \(2860y = 17.9 \times 587 \)
13. \(3.14y = 0.758 \times 38.7 \)
14. \(0.876y = 5.49 \cdot 7.59 \)

13. **Equivalent expressions of quantity.** When the value of a quantity is known in terms of one unit, it is a simple matter to find its value in terms of a second unit. Thus to find the number of square feet in 3210 sq. in., write

\[
\frac{1}{144} = \frac{\text{no. of sq. ft.}}{\text{no. of sq. in.}} = \frac{x}{3210}
\]

since there are 144 sq. in. in a square foot; hence to 144 on \(D \), set index of \(C \); opposite 3210 on \(D \), read \(x = 22.3 \) on \(C \); that is, there are 223 sq. ft. in 3210 sq. in.

Again consider the problem of finding the number of nautical miles in 28.5 ordinary miles. Since there are 5280 ft. in an ordinary mile and 6080 ft. in a nautical mile, write

\[
\frac{5280}{6080} = \frac{\text{no. of naut. mi.}}{\text{no. of ord. mi.}} = \frac{x}{28.5}
\]

make the corresponding setting and read \(x = 24.75 \) naut. mi.

EXERCISES

1. An inch is equivalent to 2.54 cm. Find the respective length in cm. of rods 66 in. long, 98 in. long, and 386 in. long. Note the proportion:

\[
\frac{\text{in.}}{\text{cm.}} = \frac{1}{2.54} = \frac{66}{x} = \frac{98}{y} = \frac{386}{z}
\]

2. One yd. is equivalent to 0.9144 meters. Find the number of meters in a distance of (a) 300 yd. (b) 875 yd. (c) 2.78 yd.

\[
\frac{\text{yd.}}{\text{m.}} = \frac{1}{0.914} = \frac{300}{x} = \frac{875}{y} = \frac{2.78}{z}
\]

3. If 7.5 gal. water weighs 62.4 lb., find the weight of (a) 86.5 gal. water, (b) 247 gal. water, (c) 3.75 gal. water.

4. 31 sq. in. is approximately 200 sq. cm. How many square centimeters in (a) 36.5 sq. in.? (b) 144 sq. in.? (c) 65.5 sq. in.?

5. If one horse-power is equivalent to 746 watts, how many watts are equivalent to (a) 34.5 horse-power, (b) 5280 horse-power, (c) 0.832 horse-power?

6. If one gallon is equivalent to 3790 cu. cm., find the number of gallons of water in a bottle which contains (a) 4290 cu. cm., (b) 9.68 cu. cm., (c) 570 cu. cm. of the liquid.

A table of equivalents is included with each K & E slide rule.
7. The intensity of pressure due to a column of mercury 1 inch high (1 inch of mercury) is 0.49 lb. per sq. in. If atmospheric pressure is 14.2 lb. per sq. in., what is atmospheric pressure in inches of mercury? What is a pressure of 286 lb. per sq. in. in inches of mercury? What is a pressure of 128 inches of mercury in lb. per sq. in.?

8. If \(P \) represents the pressure per square unit on a given quantity of a perfect gas and \(V \), the corresponding volume, then for two states of the gas at the same temperature,

\[
\frac{P_1}{P_2} = \frac{V_2}{V_1}
\]

The volume of a gas at constant temperature and pressure 14.7 lb. per sq. in. is 125 cu. in. (a) Find the respective pressures at which the volumes of the gas are 300 cu. in., 250 cu. in., 75.0 cu. in. (b) Find the respective volumes of the gas under the pressures: 85 lb. per sq. in., 55 lb. per sq. in., 23 lb. per sq. in., 10 lb. per sq. in.

14. The CI (reciprocal) scale. The reciprocal of a number is obtained by dividing 1 by the number. Thus, \(\frac{1}{2} \) is the reciprocal of 2. \(\frac{3}{2} \) is the reciprocal of \(\frac{2}{3} \) and \(\frac{1}{a} \) is the reciprocal of \(a \).

The reciprocal scale CI is marked and numbered like the C scale but in the reverse (or inverted) order, that is, the numbers on the CI scale increase from right to left. Attention is called to this fact by the numbers slanted leftwards on the scale. In general the direction of the slant of numbers on any scale is the direction of increasing numbers represented by the scale. A very important consideration may be stated as follows: When the hairline is set to a number on the C scale, the reciprocal (or Inverse) of the number is at the hairline on the CI scale; conversely, when the hairline is set to a number on the CI scale, its reciprocal is at the hairline on the C scale. If the operator will close his rule, he can read the opposites indicated in the diagram.

<table>
<thead>
<tr>
<th>CI</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>0.5</td>
<td>0.25</td>
<td>0.2</td>
<td>0.125</td>
<td>0.1111</td>
</tr>
<tr>
<td>or D</td>
<td>(1/2)</td>
<td>(1/4)</td>
<td>(1/5)</td>
<td>(1/8)</td>
<td>(1/9)</td>
<td></td>
</tr>
</tbody>
</table>

By using the facts just mentioned, we can multiply a number or divide it by the reciprocal of another number. Thus to find \(\frac{28}{7} \), we may think of it as \(28 \times \frac{1}{7} \) and to 28 on D set index of C; opposite 7 on CI read 4 on D.

Again to find \(12 \times 3 \), we may think of it as \(12 \times \frac{1}{3} \) and push hairline to 12 on D, draw 3 of CI under the hairline; opposite index of C, read 36 on D.

When the CI scale is used in multiplication and division, the position of the decimal point is determined in the usual way.

EXERCISES

1. Use the CI scale to find the reciprocals of 16, 230, 0.72, 0.065, 17.4, 18.5, 67.1.
2. Using the D scale and the CI scale, multiply 18 by 1/9 and divide 18 by 1/9.
3. Using the D scale and the CI scale multiply 28.5 by 1/0.385 and divide 28.5 by 1/0.385. Also find 28.5/0.385 and 28.5 \(\times \) 0.385 by using the C scale and the D scale.
4. Using the D scale and the CI scale multiply 41.3 by 1/0.207 and divide 41.3 by 1/0.207.

15. Proportions involving the CI scale. The CI scale may be used in connection with proportions containing reciprocals. Since any number \(a = 1 \div \frac{1}{a} \) and since \(\frac{1}{a} = \frac{1}{a} \div 1 \), we have

Rule (C). The value of any ratio is not changed if any factor of its numerator be replaced by 1 and its reciprocal be written in the denominator, or if any factor of its denominator be replaced by 1 and its reciprocal be written in the numerator. Thus \(\frac{a}{b} = a \left(\frac{1}{b} \right) = \frac{1}{b} \left(\frac{1}{a} \right) \). Hence if \(\frac{x}{a} = b \), we may write \(\frac{x}{a} = \frac{b}{(1/c)} = \frac{c}{(1/b)} \); if \(ax = bc \), we may write \(\frac{x}{(1/a)} = \frac{b}{(1/c)} = \frac{c}{(1/b)} \). A few examples will indicate the method of applying these ideas in computations.
To find the value of \(y \) which satisfies \(\frac{y}{4.27} = 0.785 \times 3.76 \), apply

Rule (C) to get \(\frac{D}{C} : \frac{y}{4.27} = \frac{0.785}{(1/3.76)} \).

Since when 3.76 of \(CI \) is under the hairline, 1/3.76 of \(C \) is also under the hairline

- push hairline to 785 on \(D \);
- draw 376 of \(CI \) under the hairline;
- opposite 427 on \(CF \), read \(y = 12.60 \) on \(DF \).

The position of the decimal point was determined by observing that \(y \) was near to \(4 \times 1 \times 4 = 16 \).

To find the value of \(y \) which satisfies \(7.89 \cdot y = \frac{0.0645}{0.381} \), use

Rule (C) to obtain \(\frac{D}{C} : \frac{y}{1.789} = \frac{0.0645}{0.381} \),

and push hairline to 645 on \(D \);
- draw 381 of \(C \) under the hairline;
- opposite 789 on \(CI \), read \(y = 0.0215 \) on \(D \).

The position of the decimal point was determined by observing that .06 is about \(\frac{1}{6} \) of .38, that \(y \) is therefore about \(\frac{1}{6} \) of \(\frac{1}{8} \) or about .02.

To find the values of \(x \) and \(y \) which satisfy \(57.6x = 0.846y = 7 \), use **Rule (C)** to obtain

\[
\frac{D}{CI} : \frac{x}{(1/57.6)} = \frac{y}{(1/0.846)} = \frac{7}{1},
\]

(a)

and to \(D \) set right index of \(CI \);
- opposite 576 on \(CI \), read \(x = 0.1215 \) on \(D \);
- push hairline to right index of \(CI \);
- draw left index of \(CI \) under hair line;
- opposite 846 on \(CI \), read \(y = 8.27 \) on \(D \).

EXERCISES

In each of the following equations find the values of the unknown numbers:

1. \(3.3x = 4.4y = \frac{75.2}{1.342} \)
2. \(78.1x = 3.44y = \frac{111}{22.8} \)
3. \(1.83x = \frac{y}{24.5} = \frac{162}{1.76} \)
4. \(\frac{0.342}{x} = \frac{y}{4.65} = \frac{189}{0.734} \)
5. \(5.83x = 0.44y = \frac{12.6}{z} = 0.2804 \)
6. \(3.42x = \frac{1.83}{y} = \frac{17.6}{z} = (2.78)(13.62) \)

Example 1. Find the value of \(\frac{7.36 \times 8.44}{92} \).

Solution. Reason as follows: first divide 7.36 by 92 and then multiply the result by 844. This would suggest that we push hairline to 736 on \(D \);
- draw 92 of \(C \) under the hairline;
- opposite 844 on \(C \), read \(0.675 \) on \(D \).

Example 2. Find the value of \(\frac{18 \times 45 \times 37}{23 \times 29} \).

Solution. Reason as follows: (a) divide 18 by 23, (b) multiply the result by 45, (c) divide this second result by 29, (d) multiply this third result by 37. This argument suggests that we push hairline to 18 on \(D \);
- draw 23 of \(C \) under the hairline;
- push hairline to 45 on \(C \);
- draw 29 of \(C \) under the hairline;
- push hairline to 37 on \(C \);
- at the hairline read \(449 \) on \(D \).

To determine the position of the decimal point write

\[
\frac{20 \times 40 \times 40}{20 \times 30} = \text{about 50. Hence the answer is 44.9.}
\]
A little reflection on the procedure of Example 2 will enable the operator to evaluate by the shortest method expressions similar to the one just considered. He should observe that: the D scale was used only twice, once at the beginning of the process and once at its end; the process for each number of the denominator consisted in drawing that number, located on the C scale, under the hairline; the process for each number of the numerator consisted in pushing the hairline to that number located on the C scale.

If at any time the indicator cannot be placed because of the projection of the slide, apply the rule of §6, or carry on the operations using the folded scales.

Example 3. Find the value of $1.843 \times 92 \times 2.45 \times 0.584 \times 365$.

Solution. By using Rule (C) of §15, write the given expression in the form

$$\frac{1.843 \times 2.45 \times 365}{(1/92) (1/0.584)}$$

and reason as follows: (a) divide 1.843 by $(1/92)$, (b) multiply the result by 2.45, (c) divide this second result by $(1/0.584)$, (d) multiply the third result by 365. This argument suggests that we

push hairline to 1843 on D,
draw 92 of CI under the hairline,
push hairline to 245 on C,
draw 584 of CI under the hairline,
push hairline to 365 on C,
at the hairline read 886 on D.

To approximate the answer we write $2(90) (5/2) (6/10) 300 = 81,000$. Hence the answer is 88,600.

Example 4. Find the value of $\frac{0.873 \times 46.5 \times 6.25 \times 0.75}{7.12}$.

Solution. The following arrangement in which the difference between the number of factors in the numerator and the number in the denominator is no greater than 1 is obtained by applying Rule (C) of §15:

$$\frac{0.873 \times 46.5 \times 0.75}{7.12 \times (1/6.25)}.$$

This may be evaluated by (a) dividing 0.873 by 7.12, (b) multiplying the result by 46.5, (c) dividing the second result by $(1/6.25)$, (d) multiplying the third result by 0.75. Hence

push hairline to 873 on D,
draw 712 of C under the hairline,
push hairline to 455 on C,
draw 625 of CI under the hairline,
push hairline to 75 on CF,
at the hairline read 267 on DF.

To approximate the answer write $\frac{1 \times 42 \times 6 \times 1}{7} = 36$. Hence the answer is 26.7.

The following rule summarizes the process.

Rule. To compute a number defined by a series of multiplications and divisions:

(a) Arrange the expression in fractional form with one more factor in the numerator than in the denominator. 1 may be used if necessary.
(b) Push the hairline to the first number in the numerator on the D scale.
(c) Using the C scale take the other numbers alternately, drawing each number of the denominator under the hairline, and pushing the hairline to each number of the numerator.
(d) Read the answer on the D scale.
(e) To get a rough approximation, compute the value of the expression obtained by replacing each number of the given expression by a convenient approximate number involving one, or at most two, significant figures.

When necessary use the rule of §6 to make a setting possible. Also the folded scales may be used to avoid shifting the slide. At any time the hairline may be pushed to a number on C or on CP; it is a good plan in combined-operation problems always to follow the operation of pushing the hairline to a mark on C or CF by drawing a mark of the same scale under the hairline.*

When a problem involving combined operations contains π as a factor the statement dealing with π at the end of §9 can be used in the solution.

*In the combined-operation computation considered above, the scale of operation may be changed at will from the C scale to the CF scale or vice versa. In general, however, if the answer is read on the D scale, the number of times the hairline has been pushed to a mark on CF must be the same as the number of times a mark on CF has been drawn under the hairline. If the answer is read on DF the process of pushing the hairline to a number on CF must have been used exactly one more time than the process of drawing a mark of CF under the hairline.
EXERCISES

1. \[\frac{7 \times 8}{5} \]

2. \[\frac{11 \times 12 \times 1}{7 \times 8} \]

3. \[\frac{9 \times 7 \times 1}{8 \times (1/5)} \]

4. \[\frac{1375 \times 0.0642}{76.400} \]

5. \[\frac{45.2 \times 11.24}{336} \]

6. \[\frac{218}{4.23 \times 50.8} \]

7. \[\frac{235}{3.86 \times 3.54} \]

8. \[\frac{2.84 \times 6.52 \times 5.19}{9.21 \times 0.1705 \times 0.0672} \]

9. \[\frac{37.7 \times 4.82 \times 830}{66.7 \times 0.835} \]

10. \[\frac{3.58}{6.67 \times 0.835} \]

11. \[\frac{362}{3.86 \times 9.61} \]

12. \[\frac{241}{281 \times 32.1} \]

13. \[\frac{73.5 \times 63.4 \times 95}{3.14} \]

14. \[\frac{3.97}{51.2 \times 0.925 \times 3.14} \]

15. \[\frac{47.3 \times 3.14}{32.5 \times 16.4} \]

16. \[\frac{3.82 \times 6.95 \times 7.85 \times 436}{79.8 \times 0.0317 \times 870} \]

17. \[\frac{187 \times 0.00236 \times 0.0768 \times 1047 \times 3.14}{0.917 \times 8.65 \times 1076 \times 3152} \]

18. \[\frac{45.2 \times 11.24}{336 \pi} \]

19. \[\frac{45.2 \times 11.24}{336 \pi} \]

20. \[\frac{45.2 \times 11.24}{336 \pi} \]

21. \[\frac{45.2 \times 11.24}{336 \pi} \]

CHAPTER III

SQUARES AND SQUARE ROOTS, CUBES AND CUBE ROOTS

17. Squares. The square of a number is the result of multiplying the number by itself. Thus \(2^2 = 2 \times 2 = 4\).

The \(A\) scale is so designed that when the hairline is set to a number on the \(D\) scale, the square of the number is found under the hairline on the \(A\) scale.

To gain familiarity with the relations between these scales the operator should set the hairline to 3 on the \(D\) scale, and read 9 at the hairline on the \(A\) scale; set the hairline to 4 on \(D\), read 16 at the hairline on \(A\); etc. To find \(278^2\), set the hairline to 278 on \(D\), read 773 at the hairline on \(A\). Since \(300^2 = 90,000\), we write 77,300 as the answer. Actually \(278^2 = 77,884\). The answer obtained on the slide rule is accurate to three figures.

EXERCISE

Use the slide rule to find, accurate to three figures, the square of each of the following numbers: 25, 32, 61, 75, 89, 733, 452, 2.08, 1.753, 0.334, 0.00356, 0.953, 5270, 4.73 \times 10^2.

18. Square roots. The square root of a given number is a second number whose square is the given number. Thus the square root of 4 is 2 and the square root of 9 is 3, or, using the symbol for square root, \(\sqrt{4} = 2\), and \(\sqrt{9} = 3\).

The \(A\) scale consists of two parts which differ only in slight details. We shall refer to the left hand part as \(A\) left and to the right hand part as \(A\) right.

Rule. To find the square root of a number between 1 and 10, set the hairline to the number on scale \(A\) left, and read its square root at
the hairline on the D scale. To find the square root of a number between 10 and 100, set the hairline to the number on scale A right, and read its square root at the hairline on the D scale. In either case place the decimal point after the first digit. For example, set the hairline to 9 on scale A left, read 3 (= \sqrt{3}) at the hairline on D, set the hairline to 25 on scale A right, read 5 (= \sqrt{25}) at the hairline on D.

To obtain the square root of any number, move the decimal point an even number of places to obtain a number between 1 and 100; then apply the rule written above in italics; finally move the decimal point one half as many places as it was moved in the original number but in the opposite direction.* The learner may also place the decimal point in accordance with information derived from a rough approximation.

For example, to find the square root of 23,400, move the decimal point 4 places to the left thus getting 2.34 (a number between 1 and 10), set the hairline to 2.34 on scale A left, read 1.530 at the hairline on the D scale, finally move the decimal point \(\frac{1}{2} \) of 4 or 2 places to the right to obtain the answer 153.0. The decimal point could have been placed after observing that \(\sqrt{10000} = 100 \) or that \(\sqrt{40000} = 200 \).

To find \(\sqrt{3850} \), move the decimal point 2 places to the left to obtain 38.50, set the hairline to 38.50 on scale A right, read 6.20 at the hairline on the D scale, move the decimal point one place to the right to obtain the answer 62.0. The decimal point could have been placed by observing that \(\sqrt{3600} = 60 \).

To find \(\sqrt{0.000585} \), move the decimal point 4 places to the right to obtain 5.85, find \(\sqrt{5.85} = 2.42 \), move the decimal point two places to the left to obtain the answer 0.0242.

*The following rule may also be used: If the square root of a number greater than unity is desired, use A left when it contains an odd number of digits to the left of the decimal point, otherwise use A right. For a number less than unity use A left if the number of zeros immediately following the decimal point is odd, otherwise, use A right.

\section{EVALUATION OF SIMPLE EXPRESSIONS}

1. Find the square root of each of the following numbers: 8, 12, 17, 89, 8.00, 890, 0.89, 7280, 0.0635, 0.0000635, 63.500, 100.000.

2. Find the length of the side of a square whose area is (a) 53,500 ft\(^2\); (b) 0.0776 ft\(^2\); (c) 3.27 \times 10^4 \text{ ft}^2.

3. Find the diameter of a circle having area (a) 256 ft\(^2\); (b) 0.773 ft\(^2\); (c) 1950 ft\(^2\).

19. Evaluation of simple expressions containing square roots and squares. When the hairline is set to a number on the proper one of the two A scales, its square root is automatically set to the hairline on the D scale. Consequently we may multiply and divide numbers by square roots of other numbers or we may find the value of the unknown in a proportion involving square roots.

For example to find \(3\sqrt{3.24} \) set the left index of C to 3.24 on A left, and therefore to \(\sqrt{3.24} \) on D, then push the hairline to 3 on C, and at the hairline read 540 on D. Since \(3\sqrt{3.24} \) is nearly equal to 3 \(\sqrt{4} = 6 \), we have \(3\sqrt{3.24} = 5.40 \). Observe that the process is that for multiplication by means of the C and D scales, the A scale being used as a means of setting \(\sqrt{3.24} \) on the D scale.

To find the value of \(x = \frac{28\sqrt{375}}{360} \), in accordance with rule B of §12, write

\[
\frac{C}{D} : \frac{x}{\sqrt{375}} = \frac{28}{369},
\]

and push the hairline to 369 on D
draw 28 of C under the hairline,
push hairline to 375 on A left,
at hairline read \(x = 1.469 \) on C

The approximate answer \(30\sqrt{400} \div 400 = 1.5 \) indicated the position of the decimal point. Note also that the hairline was set to \(\sqrt{375} \) on D indirectly by setting it to 375 on A left.

To find the value of \(x = \frac{347}{4.92\sqrt{0.465}} \), use rule B of §12 to get

\[x \sqrt{0.465} = 347/4.92\]

and then rule C of §15 to obtain

\[
\frac{D}{C} : \frac{\sqrt{0.465}}{1/x} = \frac{347}{4.92},
\]
and

draw 492 of C under the hairline,
push hairline to 465 on A right,
at the hairline read \(x = 103.4 \) on CI.

The decimal point was placed in accordance with the approximate
value \(350 \div (5 \times \sqrt{49}) = 350 \div 3.5 \approx 100 \).

The area of a circle may be conveniently found when its radius
is known by using the A, C, and D scales. If \(\pi \) represents
a mathematical constant whose value is approximately 3.14, and \(r \)
represents the radius of a circle, then the area \(A \) of the circle is \(\pi r^2 \).
Similarly if \(d \) represents the diameter of a circle then its area is given
by the formula \(A = (\pi/4) d^2 = 0.785 d^2 \) nearly. Hence to find the
area of a circle,

to \(\pi/4 \) (= 0.785 approx.) of A right set index of C
opposite diameter on C read area on A.

Note that a special mark toward the right end of the A scale gives
the exact position of \(\pi/4 \). Thus to find the area of a circle of
diameter 17.5 ft.,
to \(\pi/4 \) on A right set index of C,
opposite 175 on C read 241 on A.
Therefore the area is 241 sq. ft.

EXERCISES

1. \(42.2 \sqrt{0.328} \)
2. \(1.83 \sqrt{0.0517} \)
3. \(\sqrt{3.28} + 0.212 \)
4. \(\sqrt{51.7} + 103 \)
5. \(0.763 + \sqrt{0.0296} \)
6. \(447 \times (7.48)^2 \) \((76)^2\)
7. \((2.56)^2 \times 1.808 \) \((1.385)^2\)
8. \((2.38)^3 \times 19.7 \) \(18.14 \)
9. \(6.76 \times 2.17 \) \((2.7)^2\)
10. \(\sqrt{77} \times 5.34 \times \sqrt{7.62} \)
11. \(\sqrt{90} \) \(645 \)
12. \(14.3 \times 47.5 \) \(\sqrt{0.344} \)
13. \(102.5 \times \sqrt{0.571} \)
14. \(7.92 \times \sqrt{7.89} \) \(\sqrt{8.99} \)

15. Find the area of a circle having diameter (a) 2.75 ft.; (b) 60.8 ft.; (c) 0.753 ft.; (d) 1.876 ft.
16. Find the area of a circle having radius (a) 3.46 ft.; (b) 0.0436 ft.; (c) 17.53 ft.; (d) 8650 ft.

§20

COMBINED OPERATIONS

20. Combined operations involving square roots and squares.

The problems and settings of this article have very little importance,
if any, and may well be omitted.

The principle of Example 2 §16 may be applied to evaluate a function
containing indicated square roots as well as numbers and reciprocals
of numbers. If the learner will recall that when the hairline is set
to a number on the CI scale it is automatically set to the reciprocal
of the number on the C scale and when set to a number on the A scale
it is automatically set to the square root of the number on the D scale,
his will easily understand that the method used in this article is
essentially the same as that used in §16. The principle of determining
whether A left or A right should be used is the same whether
we are merely extracting the square root of a number or whether the
square root is involved with other numbers.

Example 1. Evaluate \(\frac{915 \times \sqrt{36.5}}{804} \).

Solution. Remembering that the hairline is automatically set to
\(\sqrt{36.5} \) on the D scale when it is set to 365 on A right, use the rule
of §16 and

- push hairline to 365 on A right,
- draw 804 of the C scale under the hairline,
- push the hairline to 915 on C,
- at hairline read 6.88 on D.

Example 2. Evaluate \(\frac{\sqrt[3]{832} \times 365 \times 1863}{(1/736) \times 89,400} \).

Solution. Before making the setting indicated in this solution,
the learner should read the italicized rule in §16.

- Push hairline to 832 on A left,
- draw 736 of CI under the hairline,
- push hairline to 365 on C,
- draw 804 of C under the hairline,
- push hairline to 1863 on C,
- at hairline read 160,900 on D.

To get an approximate value write

\[
\frac{(30)(400)(2000)(700)}{90,000} = 190,000 \text{ nearly.}
\]
Example 3. Evaluate \[\left(\frac{0.286 \times \sqrt{2350} \times 652 \times 55.3}{785 \times 1288} \right)^2 \].

Solution. Write the expression in the form
\[\left(\frac{\sqrt{2350} \times 0.286 \times 55.3 \times 1}{(1/652) \times 785 \times 1288} \right)^2 \]
and
push hairline to 235 on A right,
draw 652 of CI under the hairline,
push hairline to 286 on C,
draw 785 of C under the hairline,
push hairline to 553 on C,
draw 1288 of C under the hairline,
and opposite the index of C read 0.244 on A.

Example 4. Evaluate \[\frac{875 \times 62.3 \times \sqrt{278}}{43.1 \times \sqrt{7460}} \].

Solution. Equate the given expression to \(x \), apply Rule B §12, and write
\[\frac{C}{D} = \frac{875}{43.1 \times \sqrt{7460}} = \frac{x}{\sqrt{278}} \]
and
push hairline to 746 on A right,
draw 623 of C under the hairline,
push hairline to 431 on C,
draw 875 of C under the hairline,
push hairline to 278 on A left,
and at the hairline read \(244 \) on C.

EXERCISES
1. \(\frac{787 \times \sqrt{577}}{2.38} \)
2. \(\frac{88 \times \sqrt{303} \times \pi}{775 \times 0.685} \)
3. \(\frac{4.25 \times \sqrt{402}}{0.275 \times \pi} \)
4. \(\frac{(2.60)^2 \times 0.298}{(217)^2} \)
5. \(\frac{5790 \times (7.89)^2 \times (6.79)^2}{(4.67)^2 \times (281)^2} \) Hint. Write \[\frac{5790 \times 789 \times 679}{4.67 \times 281} \]
6. \(\frac{15.6 \times \sqrt{34.1}}{\sqrt{32.3}} \) Hint. See Example 4.
7. \(\frac{63.5 \times \pi \times \sqrt{0.48}}{\sqrt{42.7}} \)

21. Cubes. The cube of a number is the result of using the number three times as a factor. Thus the cube of 3 (written \(3^3 \)) is \(3 \times 3 \times 3 = 27 \).

The \(K \) scale is so constructed that when the hairline is set to a number on the \(D \) scale, the cube of the number is at the hairline on the \(K \) scale. To convince himself of this the operator should set the hairline to 2 on \(D \), read 8 at the hairline on \(K \), set the hairline to 3 on \(D \), read 27 at the hairline on \(K \), etc. To find \(21.7^3 \), set the hairline to 217 on \(D \) and read 102 on \(K \). Since \(20^3 = 8000 \), the answer is near 8000. Hence we write 10,200 as the answer. To obtain this answer otherwise, write
\[21.7^3 = \frac{21.7 \times 21.7}{(1/21.7)} \]
and use the general method of combined operations. This latter method is more accurate as it is carried out on the full length scales.

EXERCISES
1. Cube each of the following numbers by using the \(K \) scale and also by using the method of combined operations: \(2.1, 3.2, 62, 75, 89, 793, 0.452, 3.08, 1.753, 0.0334, 0.943, 5270, 3.85 \times 10^4 \).
2. How many gallons will a cubical tank hold that measures 26 inches in depth? (1 gal. = 231 cu. in.)

22. Cube roots. There are three parts to the \(K \) scale, each the same as the others except in position. We shall refer to the left hand part, the middle part, and the right hand part as \(K \) left, \(K \) middle, and \(K \) right respectively.

The cube root of a given number is a second number whose cube is the given number.
Rule. To find the cube root of a number between 1 and 10 set the hairline to the number on K left, read its cube root at the hairline on D. To find the cube root of a number between 10 and 100, set the hairline to the number on K middle, and read its cube root at the hairline on D. The cube root of a number between 100 and 1000 is found on the D scale opposite the number on K right. In each of the three cases the decimal point is placed after the first digit. To see how this rule is used, set the hairline to 8 on K left, read 2 at the hairline on D; set the hairline to 27 on K middle, read 3 at the hairline on D; set the hairline to 343 on K right, read 7 at the hairline on D.

To obtain the cube root of any number, move the decimal point over three places (or digits) at a time until a number between 1 and 1000 is obtained, then apply the rule written above in italics; finally move the decimal point one third as many places as it was moved in the original number but in the opposite direction. The learner may also place the decimal point in accordance with information derived from a rough approximation.

For example, to find the cube root of 23,400,000, move the decimal point 6 places to the left, thus obtaining 23.4. Since this is between 10 and 100, set the hairline to 234 on K middle, read 2.86 at the hairline on D. Move the decimal point \(\frac{1}{3} (6) = 2 \) places to the right to obtain the answer 286. The decimal point could have been placed after observing that \(\sqrt[3]{27,000,000} = 300 \).

To obtain \(\sqrt[3]{0.000585} \), move the decimal point 6 places to the right to obtain \(\sqrt[3]{585} \), set the hairline to 585 on K right, and read \(\sqrt[3]{585} = 8.36 \). Then move the decimal point \(\frac{1}{3} (6) = 2 \) places to the left to obtain the answer 0.0836.

Exercise

Find the cube root of each of the following numbers: 8.72, 30, 729, 850, 7630, 0.00763, 0.0763, 0.763, 89,600, 0.625, \(75 \times 10^7 \), 10, 100, 100,000.

23. Applications of Proportions. By setting the hairline to numbers on various scales we may set square roots, cube roots and reciprocals of numbers on the D scale and on the C scale. Hence we can use the slide rule to evaluate expressions involving such quantities, and we can solve proportions involving them. The position of the decimal point is determined by a rough calculation.

Example 1. Find the value of \(\frac{\sqrt[3]{385}}{2.36} \).

Solution. We may think of this as a division or write the proportion \(\frac{\sqrt[3]{385}}{1} = \frac{\sqrt[3]{385}}{2.36} \), and then push the hairline to 385 on K right, draw 236 of C under the hairline, opposite index of C read 3.08 on D.

Example 2. Find the value of \(\frac{5.37}{\sqrt[3]{0.0835}} \).

Solution. Equating the given expression to \(x \) and applying Rule B §12, we write

\[
\frac{x}{\sqrt[3]{0.0835}} = \frac{5.37}{\sqrt[3]{52.5}}
\]

This proportion suggests the following setting:
push hairline to 525 on A right, draw 537 of C under the hairline, push the hairline to 835 on K middle, at hairline read \(x = 0.324 \) on C.
24. The L scale. The problems of this chapter could well be solved by means of logarithms. The following statements indicate how the L scale is used to find the logarithms of numbers to the base 10.

(A) When the hairline is set to a number on the C scale it is at the same time set to the mantissa (fractional part) of the common logarithm of the number on the L scale, and conversely, when the hairline is set to a number on the L scale it is set on the C scale to the antilogarithm of that number.

(B) The characteristic (integral part) of the common logarithm of a number greater than 1 is positive and is one less than the number of digits to the left of the decimal point; the characteristic of a number less than 1 is negative and is numerically one greater than the number of zeros immediately following the decimal point.

Example. Find the logarithm of (a) 50; (b) 1.6; (c) 0.35; (d) 0.00905.

Solution. (a) To find the mantissa of log 50, push hairline to 50 on C, at hairline on L read 0.699.

Hence the mantissa is .699. Since 50 has two digits to the left of the decimal point, its characteristic is 1.

Therefore $\log 50 = 1.699$.

Solution. (b) Push hairline to 16 on C, at hairline on L read 0.204.

Supplying the characteristic in accordance with (B), we have $\log 1.6 = 0.204$.

Solution. (c) Push hairline to 35 on C, at hairline on L read 0.544.

Hence, in accordance with (B), we have $\log 0.35 = 9.544 - 10$.

Solution. (d) Push hairline to 905 on C, at hairline on L read 0.956.

Hence, in accordance with (B), we have $\log 0.00905 = 7.956 - 10$.

Exercise

Find the logarithms of the following numbers: 32.7, 6.51, 980,000, 0.676, 0.01052, 0.000412, 72.6, 0.267, 0.00802, 432.
CHAPTER IV

TRIGONOMETRY*

25. Some important formulas from plane trigonometry. The following formulas from plane trigonometry, given for the convenience of the student, will be employed in the slide rule solution of trigonometric problems considered in this chapter.

In the right triangle ABC of Fig. 1, the side opposite the angle A is designated by a, the side opposite B by b, and the hypotenuse by c. Referring to this figure, we write the following definitions and relations.

Definitions of the sine, cosine, and tangent:

\[
\text{sine } A \ (\text{written } \sin A) = \frac{a}{c} = \text{opposite side \ hypotenuse},
\]

\[
\text{cosine } A \ (\text{written } \cos A) = \frac{b}{c} = \text{adjacent side \ hypotenuse},
\]

\[
\text{tangent } A \ (\text{written } \tan A) = \frac{a}{b} = \text{opposite side \ adjacent side}.
\]

Reciprocal relations:

\[
\text{cosecant } A \ (\text{written } \csc A) = \frac{c}{a} = \frac{1}{\sin A},
\]

\[
\text{secant } A \ (\text{written } \sec A) = \frac{c}{b} = \frac{1}{\cos A},
\]

\[
\text{cotangent } A \ (\text{written } \cot A) = \frac{b}{a} = \frac{1}{\tan A}.
\]

Relations between complementary angles:

\[
\sin A = \cos (90^\circ - A),
\]

\[
\cos A = \sin (90^\circ - A),
\]

\[
\tan A = \cot (90^\circ - A),
\]

\[
\cot A = \tan (90^\circ - A).
\]

*See the authors' "Plane and Spherical Trigonometry," McGraw-Hill Book Co., New York, N.Y., for a thorough treatment of the solution of triangles both by logarithmic computation and by means of the slide rule.

§26. THE S AND ST SCALES

Relations between supplementary angles:

\[
\sin (180^\circ - A) = \sin A,
\]

\[
\cos (180^\circ - A) = -\cos A,
\]

\[
\tan (180^\circ - A) = -\tan A.
\]

Relation between angles in a right triangle:

\[
A + B = 90^\circ.
\]

If in any triangle such as ABC of Fig. 2, A, B, and C represent the angles and a, b, and c, represent, respectively, the lengths of the sides opposite these angles, the following relations hold true:

\[
\text{Law of sines: } \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.
\]

\[
\text{Law of cosines: } a^2 = b^2 + c^2 - 2bc \cos A.
\]

When solving problems involving trigonometric functions the slide should be set with the trigonometric scales directly opposite the D scale.

26. The S (Sine) and ST (Sine Tangent) scales. The graduations on the sine scales S and ST represent angles. Accordingly, for convenience, we shall speak of setting the hairline to an angle, or drawing an angle under the hairline.

There are really two S scales, one called S or the sine scale specified by the right-slanted numbers on S; the other S left-slanted or the cosine scale specified by the left-slanted numbers. Note that the graduations on the sine scale represent angles increasing from left to right, and that the graduations on the cosine scale represent angles increasing from right to left. The sine scale is the predominant scale. In what follows any reference to an angle on a trigonometric scale will be to the right-slanted angle unless otherwise indicated.

The ST scale, representing angles from about 0.6 degrees to 5.74 degrees, is a sine scale, but since it is also used as a tangent scale it is designated ST.
In order to set the hairline to an angle on the sine scales it is necessary to determine the value of the angles represented by the subdivisions. Thus since there are ten primary intervals between 4° and 5° each represents 0.1°; since each of the primary intervals is subdivided into five secondary intervals, each of the latter represents 0.02°. Again since there are five primary intervals between 20° and 25°, each represents 1°; since each primary interval here is subdivided into 5 secondary intervals, each of the latter represents 0.2°. These illustrations indicate the manner in which the learner should analyze the part of the scale involved to find the value of the smallest interval to be considered. In general when setting the hairline to an angle the student should always have in mind the value of the smallest interval on the part of the slide rule under consideration.

When the hairline is set to an angle on the S or the ST scale, the sine of the angle is on scale C at the hairline, and hence on scale D when the rule is closed. Also when the hairline is set to an angle on the cosine scale (S left-slanted) the cosine of the angle is on scale C at the hairline.

Each small inscription at the right end of a scale is called the legend of the scale. A legend of a scale specifies a range of values associated with the function represented by the scale. Thus the legend 0.1 to 1.0 of scale S specifies that the sines of the angles on S and the cosines of angles on S left-slanted range from 0.1 to 1, and the legend 0.01 to 0.1 of the ST scale indicates that sines (or tangents) of angles on ST range from 0.01 to 0.1.

Example. Evaluate (a) sin 36.4° (b) sin 3.40°.

Solution (a)
Opposite 36.4° on S,
read on C (or D when rule is closed), 0.593.

The result 0.593 lies between 0.1 and 1.0, that is, within the range specified by the legend 0.1 to 1.0 of S.

Solution (b)
Opposite 3.40° on ST,
read on C, 0.0593.

The result 0.0593 lies between 0.01 and 0.1, that is, within the range specified by the legend 0.01 to 0.1 of ST.

FIG. 3.

Fig. 3 shows scales ST, S, and D on which certain angles and their sines are indicated. As an exercise close your slide rule and read the sines of the angles shown in the figure and compare your results with those given. Note that the values of sines appearing in Fig. 3 conform with the corresponding legends.

The S and ST scales are essentially one continuous scale read against two continuous cycles of the C scale. Fig. 4 represents this relationship.

FIG. 4.

Each angle on S left-slanted is 90° minus the corresponding angle on S right-slanted. Also equations (7) and (8) §25 are
sin A = cos (90° - A), cos A = sin (90° - A).
Hence when the hairline is set to an angle A on S it is set to sin A and to cos (90° - A) on scale C. For example set the hairline to 25° on S,
at the hairline read on C, 0.423 - sin 25° - cos 65°.
To find the cosine of an angle greater than 84.25°, use cos A - sin (90° - A). Thus to find cosine 86.9°, write cosine 86.9° - sin 3.1° and opposite 3.1° on ST read on C, 0.0541 - sin 3.1° - cos 86.9°.

EXERCISES

1. By examination of the slide rule verify that on the S scale from the left index to 10° the smallest subdivision represents 0.05°; from 10° to 20° it represents 0.1°; from 20° to 30° it represents 0.2°; from 30° to 60° it represents 0.5°; from 60° to 90° it represents 1°; and from 90° to 10° it represents 5°.*

2. Find the sine of each of the following angles:
 (a) 30°. (b) 38°. (c) 33.3°. (d) 90°. (e) 88°.
 (f) 1583°. (g) 14.63°. (h) 22.4°. (i) 11.8°. (j) 51.5°.

* On the 20° rule divisions between 60° and 90° represent 82°, 84° and 86°.
3. Find the cosine of each of the angles in Exercise 2. Use the left-slanted numbers on the S scale.

4. Find x in each equation:

 (a) $\sin x = 0.5$.
 (b) $\sin x = 0.875$.
 (c) $\sin x = 0.375$.

 (d) $\cos x = 0.1$.
 (e) $\cos x = 0.015$.
 (f) $\cos x = 0.62$.

 (g) $\sin x = 0.062$.
 (h) $\sin x = 0.0015$.
 (i) $\sin x = 0.92$.

5. Find x in each equation:

 (a) $\cos x = 0.5$.
 (b) $\cos x = 0.875$.
 (c) $\cos x = 0.375$.

 (d) $\cos x = 0.1$.
 (e) $\cos x = 0.015$.
 (f) $\cos x = 0.62$.

 (g) $\cos x = 0.062$.
 (h) $\cos x = 0.0015$.
 (i) $\cos x = 0.92$.

27. Simple operations involving the S and ST scales. If the reader will reflect that when the hairline is set to an angle A on scale S, it is also set to $\sin A$ on C, he can easily see that sines and cosines of angles can be used in combined operations and proportions by means of the S and ST scales just as square roots and reciprocals were used in Chapter III by means of the A scale and the CI scale. Thus to find $8 \sin 40^\circ$,

 opposite 8 on D set index of C;

 opposite 40° on S read on D, $5.14 = 8 \sin 40^\circ$.

 The decimal point was placed after observing on the slide rule that $\sin 40^\circ$ is approximately 0.6 and therefore that $8 \sin 40^\circ$ is approximately $8 \times 0.6 = 4.8$. The legend of the S scale 0.1 to 1.0 indicates that the approximate value of $\sin 40^\circ$ is 0.6, a value between 0.1 and 1.0.

 To find $8/\cos 40^\circ$,

 opposite 8 on D set 40° of S left-slanted,

 opposite index of C read on D, $10.44 = \frac{8}{\cos 40^\circ}$.

 Here the decimal point was placed after observing on the slide rule that $\cos 40^\circ$ is near 0.8 and therefore that $8/\cos 40^\circ$ is nearly equal to $8/0.8 = 10$. Here again the legend 0.1 to 1.0 of S indicates that $\cos 40^\circ$ is between 0.1 and 1.0.

 The following examples illustrate the use of proportions involving trigonometric functions.

Example 1. Find A if $\sin 32^\circ = \frac{270}{320}$.

Solution. Here both parts in the first ratio are known. Hence

\[
\frac{S}{D} : \frac{\sin 36^\circ}{270} = \frac{\sin A}{320},
\]

and

opposite 270 on D set 36° of S,

push hairline to 320 on D,

at hairline read on S, $44.2^\circ = A$.

Example 2. Find A and x if $\frac{250}{\sin 32^\circ} = \frac{330}{\sin A} = \frac{x}{\cos 80^\circ}$.

Solution. Write

\[
\frac{D}{S} : \frac{250}{\sin 32^\circ} = \frac{330}{\sin A} = \frac{x}{\cos 80^\circ},
\]

and

opposite 250 on D set 32° of S,

push hairline to 330 on D,

at hairline read on S, $44.40^\circ = A$,

push the slide so that left index on C replaces right index,

push hairline to 80° left-slanted on S,

at hairline read on D, $81.9 = x$.

Here the decimal point was located by noting that $\sin 32^\circ = 0.5$ approx. and $\cos 80^\circ = 0.17$ approx., hence

\[
x = \frac{250 \times 0.17 \text{ approx.}}{0.5 \text{ approx.}} = 80 \text{ approx.}
\]

Example 3. Find θ if $\sin \theta = \frac{3}{5}$.

Solution. Write the given equation in the form

\[
\frac{S}{D} : \frac{\sin \theta}{3} = \frac{1}{5} = (\sin 90^\circ)
\]

and

set 90° of S opposite 5 on D,

opposite 3 on D read on S, $36.9^\circ = \theta$.

Example 4. Find θ if $\cos \theta = \frac{2}{3}$.

Solution. Write the given equation in the form

\[
\frac{S}{D} : \frac{\cos \theta}{2} = \frac{1}{3} = (\sin 90^\circ)
\]

and

set 90° of S opposite 3 on D,

opposite 2 on D read on S left-slanted: $48.2^\circ = \theta$.

EXERCISES

1. In each of the following proportions find the unknowns:

 \[(a) \frac{\sin 50.4^\circ}{7} = \frac{\sin 42.2^\circ}{x} = \frac{\sin \theta}{8}, \quad (b) \frac{\sin \theta}{30.5} = \frac{\sin 35^\circ}{x} = \frac{\sin 60.5^\circ}{32.8}, \]

 \[(c) \frac{\sin 25^\circ}{20} = \frac{\sin 40^\circ}{x} = \frac{\sin \phi}{y}, \quad (d) \frac{\sin \theta = \sin \phi}{15.6} = \frac{\sin 12.92^\circ}{25.6} = \frac{\sin 18.9^\circ}{40.7}. \]

2. Find the value of each of the following:

 \[(a) 5 \sin 30^\circ, \quad (c) 28 \cos 25^\circ, \]

 \[(b) 12 \sin 60^\circ, \quad (f) 35 \cos 52.3^\circ, \]

 \[(c) 22 \sin 30^\circ, \quad (g) 17 \sec 16^\circ, \]

 \[(d) 15 \sin 20^\circ, \quad (h) 55 \sin 18^\circ. \]

3. Find the value of \(\theta\) in each of the following:

 \[(a) \sin \theta = \frac{307 \sin 42.5^\circ}{2030}, \quad (c) \sin \theta = \frac{433 \sin 18.17^\circ}{136}, \]

 \[(b) \sin \theta = \frac{413 \sin 77.7^\circ}{488}, \quad (d) \sin \theta = \frac{186 \sin 12.92^\circ}{40.7}. \]

4. Find the value of \(z\) in each of the following:

 \[(a) z = \frac{179.5 \sin 6.42^\circ}{\sin 34.5^\circ}, \quad (c) z = \frac{123.4 \sin 8.20^\circ}{\sin 33.5^\circ}, \]

 \[(b) z = \frac{3.27 \sin 73^\circ}{\sin 2.22^\circ}, \quad (d) z = \frac{375 \sin 18.67^\circ}{\cos 62.7^\circ}. \]

5. Find the value of \(x\) in each of the following:

 \[(a) x = \frac{4 \sin 35^\circ - 5.4 \sin 17^\circ}{\sin 47^\circ}, \quad (c) x = \frac{18 \sin 52.5^\circ - 23.4 \cos 22.2^\circ}{\sin 22^\circ \sin 63^\circ}, \]

 \[(b) x = \frac{8 - 6 \sin 70^\circ}{\sin 37^\circ - 0.91}, \quad (d) x = \frac{(27.7 \sin 39.2^\circ) - 16 \cos 12.87^\circ}{46.2 \sin 10.17^\circ + 32.1 \sin 17.27^\circ}. \]

28. Law of sines applied to solve a triangle. In the conventional way of lettering a triangle, each side is represented by a small letter and the opposite angle by the same letter capitalized. Thus in Fig. 6, each of the pairs, \(a\) and \(A\), \(b\) and \(B\), \(c\) and \(C\) represent a side and the angle opposite. The law of sines (see equation 15 §25) is

\[\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.\]

Using this law and the method of solving proportions explained in §27, we can solve any triangle for which a side, the opposite angle, and another part are given.

Example 1. Given a triangle (see Fig. 7) in which \(a = 50, A = 65^\circ\), and \(B = 40^\circ\), find \(b, c,\) and \(C\).

Solution. Since \(A + B + C = 180^\circ\),

\[C = 180^\circ - (A + B) = 75^\circ.\]

Application of the law of sines to the triangle gives

\[\frac{\sin 65^\circ}{50} = \frac{\sin 40^\circ}{b} = \frac{\sin 75^\circ}{c}.\]

Accordingly, opposite 50 on \(D\) set 65° of \(S\),

push hairline to 40° on \(S\),

at hairline read on \(D, 35.5 = b,\)

push hairline to 75° on \(S,\)

at hairline read on \(D, 53.3 = c.\)

Example 2. Find the unknown parts of the triangle in which \(a = 38.3, A = 25^\circ, B = 38^\circ.\)

Solution. In this solution, it is necessary to use \(\sin C = \sin 117^\circ.\)

By (11) of §25, \(\sin 117^\circ = \sin (180^\circ - 117^\circ) = \sin 63^\circ.\) Hence we shall use \(\sin 63^\circ\) instead of \(\sin 117^\circ\) since the \(S\) scale does not provide directly for \(117^\circ.\) In general, use the exterior angle of a triangle in the law of sines when the interior angle is greater than \(90^\circ.\)
Hence from Fig. 9 write
\[
\frac{S}{D} = \frac{\sin 25^\circ}{38.3} = \frac{\sin 38^\circ}{b} = \frac{\sin 63^\circ}{c}
\]
and

- opposite 383 on D set 25° of S,
- opposite 38° on S read b = 55.8 on D,
- opposite 63° on S read c = 80.7 on D.

29. Short cut in solving a triangle. Observe that it is not necessary to write the law of sines in solving a triangle. In accordance with the setting based on the law of sines, opposite parts on a triangle are set opposite on the slide rule. The parts to be set opposite can be used directly from the figure. Thus from Fig. 10 it appears at once that the pairs of opposites are: 68.7, 47°; x, 62°; y, 71°.

To solve the triangle

- opposite 687 on D set 47° of S,
- opposite 62° on S read x = 82.9 on D,
- opposite 71° on S read y = 88.8 on D.

To solve the right triangle of Fig. 11, note that 90° and 86.3 are opposite and

- opposite 863 on D set 90° of S,
- opposite 52° on S read a = 68.0 on D,
- opposite 38° on S read b = 53.1 on D.

To solve the right triangle of Fig. 12

- opposite 943 on D set 90° of S,
- opposite 786 on D read B = 56.5° on S,
- compute \(A = 90^\circ - B = 33.5^\circ \),
- opposite 33.5° on S read \(a = 5.21 \) on D.

EXERCISES

Solve the triangle having the given parts:
1. \(a = 50 \), \(b = 46.6\), \(c = 40.5\)
2. \(a = 60 \), \(b = 81.7\), \(c = 10.6\)
3. \(a = 590\), \(b = 50.2\), \(c = 234.6\)
4. \(a = 795\), \(b = 1245\), \(c = 109\)
5. \(a = 50.6\), \(b = 2.99\), \(c = 10.5\)
6. \(a = 729\), \(b = 512\), \(c = 40\)
7. \(a = 200\), \(b = 52\), \(c = 35\)
8. \(a = 64\), \(b = 60\), \(c = 90\)
9. \(a = 11.2\), \(b = 80\), \(c = 10.5\)
10. \(a = 62.9\), \(b = 57.5\), \(c = 90\)

28. The length of a kite string is 250 yds., and the angle of elevation of the kite is 40°. If the line of the kite string is straight, find the height of the kite.

29. A vector is directed due N.E. and its magnitude is 10. Find the component in the direction of north.

30. Find the angle made by the diagonal of a cube with the diagonal of a face of the cube drawn from the same vertex.

31. A ship at point S can be seen from each of two points, A and B, on the shore. If \(AB = 800\) ft., angle \(SAB = 67.7^\circ \), and angle \(SBA = 74.7^\circ \), find the distance of the ship from A.

32. To determine the distance of an inaccessible tower A from a point B, a line BC and the angles \(ABC\) and \(BCA\) were measured and found to be 1000 yds., \(44^\circ \), and \(70^\circ \), respectively. Find the distance AB.

* \(\sin 173.5^\circ = \sin (180^\circ - 6.5^\circ) \), or \(\sin 53.8^\circ \).
** The S.T. scale must be used for \(417^\circ \).
*** The S.T. scale must be used for angle B.
30. The T (Tangent) scale. The right-slanted numbers on the T-scale represent angles from 5.71° to 45°, the left-slanted numbers represent angles from 45° to 84.29°.

When the hairline is set to an angle A (right-slanted) on T less than 45°, its tangent is at the hairline on scale C, and hence on scale D when the rule is closed.

Since \(\tan 5.71° = 0.1\), \(\tan 45° = 1\), \(\tan 84.29° = 10\),

the range of values on scale C for tangents of angles between 5.71° and 45° is 0.1 to 1, and the range for tangents of angles between 45° and 84.29° is 1 to 10. The right-slanted legent 0.1 to 1.0 at the right end of the T scale indicates that tangents read on C are between 0.1 and 1.0. The left-slanted legent 10.0 to 1.0 indicates that tangents of angles between 45° and 84.29° are between 1 and 10.

To find the tangent of an angle A (right-slanted) between 5.71° and 45°

\[\text{opposite A on the T scale, read } \tan A \text{ on C.}\]

To find the tangent of an angle A (left-slanted) between 45° and 84.29°

\[\text{draw angle A of T opposite index of D};\]

\[\text{opposite the index of C, read } \tan A \text{ on D.}\]

For example:

- opposite 26° on T (right-slanted) read on C, \(0.488 = \tan 26°\),
- draw 64° of T (left-slanted) opposite index of D,
- opposite index of C read 2.05 = \(\tan 64°\) on D.

The cotangent of an angle may be found by using either of the identities (6) and (10), §25, namely

\[\cot A = 1 / \tan A, \quad \cot A = \tan (90° - A) \quad \text{(18)}\]

to express the cotangent of A as the tangent of an angle and then using the method outlined above. Thus to find \(\cot 58°\), write \(\cot 58° = \tan (90° - 58°) = \tan 32°\),

and opposite 32° on T read on C 0.625 = \(\cot 58°\).

To find \(\cot 32°\) write \(\cot 32° = 1 / \tan 32°\), or \(\cot 32° = \tan (90° - 32°)\)

\[= \tan 58°,\]

draw 58° left-slanted (or 32° right-slanted) of T opposite 1 on D,

opposite 1 on C read on D, 1.600 = \(\cot 32°\).

In computing an expression involving the tangent of an angle greater than 45° or any cotangent of an angle, it is advisable before beginning the computation to replace the tangent or cotangent by the tangent of an angle less than 45°. Thus to evaluate

\[565 \tan 56° + \cot 42°\]

we would first write

\[\frac{565 \tan 56°}{\cot 42°} = \frac{565 \cot 34°}{\cot 34°} = \frac{565 \tan 42°}{\tan 42°}\]

and

- push the hairline to 565 on D,
- draw 34° of T under the hairline,
- push the hairline to 42° on T,
- at the hairline read on D, 754.

The decimal point was placed after making the rough approximation

\[600 \times 0.9 = 0.6 = 900.\]

The numbers 0.9 and 0.6 lie between 0.1 and 1.0; that is, within the range specified by the legent 0.1 to 1.0 of T.

It is shown in trigonometry that the sine and the tangent of an angle less than 5.71° are so nearly equal that they may be considered equal for slide rule purposes. Thus to find \(\tan 22.5°\) and \(\cot 22.5°\),

\[\text{opposite } 22.5° \text{ on } ST \text{ read on } C, \text{ } 0.0393 = \tan 22.5°,\]

\[\text{draw } 22.5° \text{ of } ST \text{ opposite 1 on D,}\]

\[\text{opposite 1 on C read on D, } 25.5 = \cot 22.5°.\]

The operator should be careful in finding an angle greater than 45° on the tangent scale from a ratio. Thus to find \(A\) where \(\tan A = 5.6\), it is essential that the setting be made as though 90° - \(A\) were to be found. In this case

\[\tan (90° - A) = \cot A = \frac{3.1}{5.6}, \quad \text{or } \frac{\tan (90° - A)}{3.1} = \frac{1}{5.6}.\]

Hence

opposite 56 on D set 1 (= \(\tan 45°\)) of T;

opposite 31 on D read 90° - \(A\) = 29° on T right-slanted,

or opposite 31 on D read \(A\) = 61° on T left-slanted.

Note that the setting must be made as though 90° - \(A\), an angle less than 45°, were to be found.

EXERCISES

1. Fill out the following table:

<table>
<thead>
<tr>
<th>(\psi)</th>
<th>8°6'</th>
<th>27°15'</th>
<th>62°19'</th>
<th>1°7'</th>
<th>74°15'</th>
<th>87°</th>
<th>47°28'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tan \psi)</td>
<td>(\frac{3.1}{5.6})</td>
<td>(\frac{3.1}{5.6})</td>
<td>(\frac{3.1}{5.6})</td>
<td>(\frac{3.1}{5.6})</td>
<td>(\frac{3.1}{5.6})</td>
<td>(\frac{3.1}{5.6})</td>
<td>(\frac{3.1}{5.6})</td>
</tr>
</tbody>
</table>

2. The following numbers are tangents of angles. Find the angles.

(a) 0.24. (b) 0.785. (c) 0.92. (d) 0.54. (e) 0.039.

(f) 0.082. (g) 0.432. (h) 0.043. (i) 0.0149. (j) 0.374.

(k) 3.72. (l) 4.67. (m) 17.01. (n) 1.03. (o) 1.232.

3. The numbers in Exercise 2 are cotangents of angles. Find the angles.

4. Find the angle \(x\) from each equation:

(a) \(\tan x = \frac{3.7}{6.8}\). (b) \(\tan x = \frac{287}{642}\). (c) \(\tan x = \frac{5.72}{2.56}\).

(d) \(\tan x = \frac{8.52}{6.73}\). (e) \(\cot x = \frac{5}{6}\). (f) \(\cot x = \frac{143}{123}\).
31. The law of sines applied to right triangles with two legs given. When the two legs of a right triangle are the given parts, we may first find the smaller acute angle from its tangent and then apply the law of sines to complete the solution.

Example. Given the right triangle of Fig. 13 in which \(a = 3, b = 4 \), solve the triangle.

Solution. From the triangle we read \(\tan A = \frac{3}{4} \). Hence write

\[
\frac{T}{D} = \frac{\tan A}{3} = \frac{4}{3}
\]

and

- opposite 4 on \(D \) set index of \(C \),
- push hairline to 3 on \(D \),
- at hairline read \(A = 36.88^\circ \) on \(T \),
- at hairline read \(B = 53.12^\circ \) on \(T \) left-slanted.

Now complete the solution by using the method of §28. Since the hairline is set to 3 on \(D \), draw the opposite angle \(36.88^\circ \) of \(S \) under the hairline, and opposite 1 (= \(\sin 90^\circ \)) on \(S \) read \(c = 5 \) on \(D \). (See Fig. 14.)

The following rule is based on the solution just completed. Those operators who have occasion to solve many right triangles of the type under consideration should use the rule.

Rule.

To solve a right triangle for which two legs are given,
- to larger leg on \(D \) set proper index of slide,
- push hairline to smaller leg on \(D \),
- at hairline read smaller acute angle of triangle on \(T \),
- draw this angle on \(S \) under the hairline,
- at index of slide read hypotenuse on \(D \).

The solution of the triangle of Fig. 15 in accordance with the rule is as follows:

- to 862 on \(D \) set right index of \(C \),
- push hairline to 479 on \(D \),
- at hairline read \(B = 29.08^\circ \) on \(T \),
- draw 29.08° on \(S \) under the hairline,
- at index of \(S \) read \(c = 9.86 \) on \(D \).

Finally using the relation \(A = 90^\circ - B \), obtain \(A = 66.92^\circ \).

EXERCISES

Solve the following right triangles:

1. \(a = 12.3 \), \(b = 20.2 \)
2. \(a = 101 \), \(b = 116 \)
3. \(a = 50 \), \(b = 23.3 \)
4. \(a = 273 \), \(b = 418 \)
5. \(a = 28 \), \(b = 34 \)
6. \(a = 12 \), \(b = 5 \)
7. \(a = 13.2 \), \(b = 13.2 \)
8. \(a = 42 \), \(b = 71 \)
9. \(a = 0.31 \), \(b = 4.8 \)

10. The length of the shadow cast by a 10-ft. vertical stick on a horizontal plane is 3.39 ft. Find the angle of elevation of the sun.
32. Solution of a triangle for which two sides and the included angle are given. To solve an oblique triangle in which two sides and the included angle are given, it is convenient to divide the triangle into two right triangles. The method is illustrated in the following example.

Example. Given an oblique triangle in which \(a = 6, b = 9, \) and \(C = 32^\circ, \) solve the triangle.

Solution. From \(B \) of Fig. 16, drop the perpendicular \(p \) to side \(b. \) Applying the law of sines to the right triangle \(CBD, \) we obtain

\[
\frac{\sin 90^\circ}{6} = \frac{\sin 32^\circ}{p} = \frac{\sin 58^\circ}{n}.
\]

Solving this proportion, we find \(p = 3.18 \) and \(n = 5.09. \) From the figure \(m = 9 - 5.09 = 3.91. \) Hence, in triangle \(ABD, \) we have

\[
\tan A = \frac{p}{m} = \frac{3.18}{3.91} = \frac{1}{3.18} = 0.318.
\]

Solving this proportion, we get \(A = 39.1^\circ. \) Now applying the law of sines to triangle \(ABD, \) we obtain

\[
\frac{\sin 39.1^\circ}{3.18} = \frac{\sin 90^\circ}{c}.
\]

Solving this proportion, we find \(c = 5.04. \) Finally, using the relation \(A + B + C = 180^\circ, \) we obtain \(B = 108.9^\circ. \) The italicized rule of §31 could have been used in place of the last two proportions.

If the given angle is obtuse, the perpendicular falls outside the triangle, but the method of solution is essentially the same as that used in the above example.

The law of cosines (16) of §25 may also be used for the solution.

To solve the triangle of Fig. 16, we have

\[c^2 = a^2 + b^2 - 2ab \cos C\]

or

\[c^2 = a^2 + b^2 - 2 \times 6 \times 9 \cos 32^\circ - 36 + 81 - 91.6 - 25.4\]

and \(c = 5.04. \) Now using the setting based on the law of sines,

- opposite 5.04 on \(D, \) draw \(32^\circ \) of \(S, \)
- opposite 6 on \(D, \) read \(A = 39.1^\circ \) on \(S, \)

therefore \(B = 180^\circ - 32^\circ - 39.1^\circ = 108.9^\circ. \)

The solution is checked by pushing the hairline to \(71.1^\circ (=180^\circ - 108.9^\circ) \) and reading 9 on \(D \) at the hairline.

A third method of solving this case is considered in Ex. 14. It is based on the law of tangents.

EXERCISES

Solve the following triangles:

1. \(a = 94, \quad b = 56, \quad C = 29^\circ \)
2. \(a = 100, \quad b = 35, \quad C = 9^\circ \)
3. \(a = 255, \quad b = 255, \quad C = 65^\circ 30' \)
4. \(a = 2.30, \quad b = 3.57, \quad C = 62^\circ 30' \)
5. \(a = 27, \quad b = 15, \quad C = 39.3^\circ \)
6. \(a = 6.75, \quad b = 7.55, \quad C = 104^\circ \)
7. \(a = 0.085, \quad b = 0.042, \quad C = 66^\circ 55' \)
8. \(a = 17, \quad b = 12, \quad C = 59.3^\circ \)

10. Solve exercises 1 to 5 by using the law of cosines to get the third side and then the law of sines to get the unknown angles.

11. The two diagonals of a parallelogram are 10 and 12 and they form an angle of 49.18°. Find the length of each side.

12. Two ships start from the same point at the same instant. One sails due north at the rate of 10.44 mi. per hr., and the other due northeast at the rate of 7.71 mi. per hr. How far apart are they at the end of 40 minutes?

13. In a land survey find the latitude and departure of a course whose length is 525 ft. and bearing \(N 65^\circ 30' \) E. See Fig. 17.

14. The law of tangents

\[
\tan \frac{1}{2} (A - B) = \tan \frac{1}{2} (A + B) = \tan \frac{1}{2} (180^\circ - C) \quad \frac{a - b}{a + b} \quad \frac{a + b}{a - b} \quad \frac{a - b}{a + b}
\]

is used to solve a triangle for which two sides and the included angle are given. The three cases to which this leads with the slide rule are illustrated below.

(a) \(C > 90^\circ. \) Use (a) directly. For example if \(a = 6.75, \) \(b = 1.04, \) \(C = 127.15^\circ \) write

\[
\tan \frac{1}{2} (A - B) = \tan \frac{1}{2} (A + B) = \tan 26.43^\circ \quad \frac{5.71}{7.79} = \frac{7.79}{7.79}
\]

and

to 7.79 on \(D, \) set 26.43° of \(T, \)

opposite 5.71 on \(D \) read \(\frac{1}{2} (A - B) = 29.02^\circ \) on \(T. \)
The simultaneous solution of \(\frac{1}{2} (A - B) = 20.02^\circ \) and \(\frac{1}{2} (A + B) = 26.43^\circ \) is
\[A = 46.45^\circ, \quad B = 6.41^\circ. \]
Now using the method based on the law of sines find
\[c = 7.43. \]

(b) \(C < 90^\circ, \ 90^\circ \leq \frac{1}{2} (A - B) < 45^\circ. \) Use (a) in the form
\[
\frac{\tan [90^\circ - \frac{1}{2} (A - B)]}{a + b} = \frac{\tan [90^\circ - \frac{1}{2} (A + B)]}{a - b},
\]
For example if \(a = 30.3, \ b = 2.5, \ C = 50^\circ, \) write from (2)
\[
\frac{\tan [90^\circ - \frac{1}{2} (A - B)]}{32.8} = \frac{\tan 25^\circ}{27.8}
\]
and
opposite 278 on \(D \) set 25\(^\circ\) of \(T, \)
opposite 328 on \(D \) read \(90^\circ - \frac{1}{2} (A - B) = 28.81^\circ \) on \(T. \)
Now solve \(90^\circ - \frac{1}{2} (A - B) = 28.81^\circ \) with \(90^\circ - \frac{1}{2} (A + B) = 25^\circ \) to obtain
\[A = 126.19^\circ, \quad B = 5.81^\circ, \quad \text{and then find } c = 28.8 \text{ by using the method based on the law of sines.} \]
(c) \(C < 90^\circ, \ 90^\circ \leq \frac{1}{2} (A - B) \geq 45^\circ. \) In this case use (6).

For example if \(a = 130, \ b = 100, \ C = 51.5^\circ, \) write from (2)
\[
\frac{\tan [90^\circ - \frac{1}{2} (A - B)]}{239} = \frac{\tan 25.92^\circ}{30}
\]
and
opposite 30 on \(D \) set 25.92\(^\circ\) of \(T, \)
push hairline to right index of \(C, \)
draw left index of \(C \) to 239 on \(D, \)
at hairline read \(90^\circ - \frac{1}{2} (A - B) = 74.98^\circ \) on \(T \) (left-slanted).

Now find \(A = 79.10^\circ, \ B = 49.06^\circ, \ c = 104.1. \)
Solve each of the three illustrative examples of this exercise without referring to the solutions given.

33. Law of cosines applied to solve triangles for which three sides are given. When the three sides are the given parts of an oblique triangle, we may find one angle by means of the law of cosines
\[a^2 = b^2 + c^2 - 2bc \cos A \]
and then complete the solution by using the law of sines.

Example. Given the oblique triangle of Fig. 18, in which
\[a = 15, \ b = 18, \text{ and } c = 20, \]
find \(A, \ B, \text{ and } \ C. \)

Solution. From the law of cosines we write
\[\cos A = \frac{b^2 + c^2 - a^2}{2bc}, \]
or
\[\cos A = \frac{18^2 + 20^2 - 15^2}{2 \times 18 \times 20} = \frac{499}{720} \quad \text{or} \quad \cos A = \frac{1}{720}. \]
Hence opposite 720 on \(D \) set right index of \(C, \)
opposite 499 on \(D \) read \(A = 46.1^\circ \) on \(S \) (left-slanted).

Now apply the method based on the law of sines and
opposite 15 on \(D \) set \(46.1^\circ \) right-slanted of \(S, \)
opposite 18 on \(D \) read \(B = 59.9^\circ \) right-slanted on \(S, \)
opposite 20 on \(D \) read \(C = 74.0^\circ \) right-slanted on \(S. \)

The relation \(A + B + C = 46.1^\circ + 59.9^\circ + 74.0^\circ = 180^\circ \) serves as a check.

EXERCISES

Solve the following triangles:
1. \(a = 3.41, \ b = 2.60, \ c = 1.58 \)
2. \(a = 111, \ b = 7.93, \ c = 49.3 \)
3. \(a = 35, \ b = 25, \ c = 41 \)
4. \(a = 61.9, \ b = 49.2, \ c = 80.5 \)
5. \(a = 57.9, \ b = 50.1, \ c = 35.0 \)
6. \(a = 97.9, \ b = 106, \ c = 139 \)
7. \(a = 13, \ b = 14, \ c = 15 \)
8. \(a = 224, \ b = 245, \ c = 265 \)

10. The sides of a triangular field measure 224 ft., 245 ft., and 265 ft. Find the angles at the vertices.

11. Find the largest angle of the triangle whose sides are 13, 14, 16.

12. Solve Ex. 11 by means of the following formula:
\[
\tan \frac{A}{2} = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}} \text{ where } s = \frac{1}{2}(a + b + c).
\]

13. In triangle \(ABC \) of Fig. 19
\[
p^2 = b \cdot c - a^2 = a^2 - n^2.
\]
Hence \(b^2 = a^2 + n^2. \)

Factoring and replacing \((m + n) \) by \(c, \) we have
\[(b + a)(b - a) = (m + n)(m - n) = c(m - n), \]
or
\[\frac{b + a}{c} = \frac{m - n}{b - a}. \]

To solve the triangle \(ABC, \) find \(m - n \) by using proportion (a). Combine this result with \(m + n = c, \)
to find \(m \) and \(n. \) Then solve each of the right triangles of triangle \(ABC \) and use the results to find the angles \(A, B, \) and \(C. \)
Apply this method to solve Exs. 1, 2, 3.
14. Another method of solving for angle \(A \) when sides \(a, b, \) and \(c \) are given follows. From the law of cosines, equation (16) §25, get
\[
\cos A = \frac{b^2 + c^2 - a^2}{2bc} - \frac{2bc}{2bc} + \frac{(b^2 - 2bc + c^2) - a^2}{2bc}
\]
\[
= 1 + \frac{(b - c)^2 - a^2}{2bc} = 1 - \frac{a^2 - (b - c)^2}{2bc},
\]
or
\[
\cos A = 1 - \frac{(a - b + c)(a - b - c)}{2bc}.
\]
Thus to solve the triangle in which \(a = 21, b = 24, c = 27 \) for \(A \), substitute these numbers in (a) to obtain
\[
\cos A = 1 - \frac{(21 - 24 + 27)(21 + 24 - 27)}{2(24)(27)} = \frac{2}{3}, \quad \text{or} \quad \cos A = \frac{1}{3}
\]
Hence opposite \(3 \) on \(D \) set right index of \(S \),
opposite \(2 \) on \(D \) read \(A = 48.2^\circ \) on \(S \) left-slanted.
Now use the law of sines to get \(B = 58.4^\circ, \ C = 73.4^\circ \).
Show that if \(a = 97.9, b = 106, c = 139, \) angle \(A = 44.6^\circ \).
Also use the method of this exercise to obtain angle \(A \) in exercises 3, 4, 8, and 9.

34. Law of sines applied to oblique triangles, continued. The ambiguous case. When the given parts of a triangle are two sides and an angle opposite one of them, and when the side opposite the given angle is less than the other given side, there may be two triangles which have the given parts. We have already solved triangles in which the side opposite the given angle is greater than the other side. In this case there is always only one solution. Consider now a case where there are two solutions.

Example. Given \(a = 175, b = 215, \) and \(A = 35.5^\circ \), solve the triangle.

Solution. Fig. 20 shows the two possible triangles, \(A B_1 C_1 \) and \(A B_2 C_2 \), having the given parts. To solve these triangles opposite \(175 \) on \(D \) set \(35.5^\circ \) of \(S \),
opposite \(215 \) of \(D \) read \(B_1 = 45.5^\circ \) on \(S \).
\(C_1 = 180^\circ - A - B_1 = 99^\circ \),
opposite \(180^\circ - 99^\circ \) (=81°) on \(S \) read \(c_1 = 298 \).
From Fig. 20 it appears that \(B_2 = 180^\circ - B_2 = 134.5^\circ \).
\(C_2 = 180^\circ - A - B_2 = 180^\circ - 10^\circ = 170^\circ \). Since 175 of \(D \) is opposite \(35.5^\circ \) of \(S \), push hairline to 10° on \(S \) and read \(c_2 = 52.3 \) on \(D \) at the hairline.

It is instructive to observe that the slide was set only once, and that the required parts were obtained by pushing the hairline to parts already found and reading unknown parts at the hairline.

Let the three known parts of a triangle be \(a, b, \) and \(A \). Fig. 21 represents the triangle with the given parts encircled. If \(a \) is less than \(b \) but greater than \(p \), there are two triangles \(A B_1 C \) and \(A B_2 C \) having the given parts, if \(a = p \) there is only one triangle \(A BC \), and if \(a \) is less than \(p \) there will be no solution. Hence when \(p \) is found the computer knows the number of solutions to expect.

If \(a \) is greater than \(b \), there will be one and only one triangle satisfying the given conditions.

EXERCISES

Solve the following oblique triangles.

1. \(a = 18 \), \(b = 20 \), \(c = 27 \), \(A = 35.5^\circ \).
2. \(b = 19 \), \(c = 5.16 \), \(c = 8.84 \), \(A = 15.82^\circ \), \(B = 44^\circ \), \(R = 40^\circ \).
3. \(a = 32.2 \), \(b = 27.1 \), \(c = 21 \), \(A = 55.4^\circ \).
4. \(a = 177 \), \(b = 210 \), \(c = 139 \), \(A = 44.6^\circ \).
5. \(a = 17.060 \), \(b = 14.050 \), \(c = 8.4 \), \(A = 35.6^\circ \).

7. Find the length of the perpendicular \(p \) for the triangle of Fig. 22. How many solutions will there be for triangle \(ABC \) if \((a) \) \(b = 37 \) \((b) \) \(b = 47 \) \((c) \) \(b = p \) ?

35. Combined operations. The method for evaluating expressions involving combined operations as stated in §§16 and 23 applies without change when some of the numbers are trigonometric functions. This is illustrated in the following examples.

Example 1. Evaluate \(\frac{4 \sin 38^\circ}{\tan 42^\circ} \).

Solution. Push hairline to 4 on \(D \),
draw 42° of \(T \) under the hairline,
push hairline to 38° on \(S \),
at the hairline read 2.735 on \(D \).

Example 2. Evaluate \(\frac{\sqrt{17} \cos 29^\circ}{\sin 43^\circ} \).

Solution. Using the method of §16,
push hairline to 17 on A right,
draw 22 of C under the hairline,
push hairline to 20° on T,
draw 61 of C under the hairline,
push hairline to 43' right-slanted on S,
at hairline read 0.0763 on D.

Example 3. Evaluate \(\sqrt{3.8 \csc 17^\circ \cot 31^\circ \cos 41^\circ} \)
\[\frac{\sin 21^\circ}{8.66 \tan 48^\circ} \]

Solution. Replacing \(\csc 17^\circ \) by \(\frac{1}{\sin 17^\circ} \), \(\cot 31^\circ \) by \(\frac{1}{\tan 31^\circ} \), and \(\tan 48^\circ \) by \(\frac{1}{\tan 42^\circ} \) and using rule C § 15, we obtain
\[\sqrt{3.8 \sin 42^\circ \cos 41^\circ} \]
\[\frac{8.66 \sin 17^\circ}{\tan 51^\circ} \]
PUSH hairline to 38 on A left,
draw 866 of C under the hairline,
push hairline to 42° on T,
draw 17° of S under the hairline,
push hairline to 41° left-slanted on S,
draw 31° of T under the hairline,
at index of C read 0.871 on D.

EXERCISES

Evaluate the following:
1. \[\frac{18.6 \sin 36^\circ}{\sin 21^\circ} \]
2. \[\frac{32 \sin 18^\circ}{27.5} \]
3. \[\frac{4.2 \tan 23^\circ}{\sin 45.5^\circ} \]
4. \[\frac{34.3 \sin 17^\circ}{\tan 22.5^\circ} \]
5. \[\frac{13.1 \cos 40^\circ}{\tan 35.2^\circ} \]
6. \[\frac{17.2 \cos 35^\circ}{\cot 50^\circ} \]
7. \[\frac{7.8 \sec 35.5^\circ}{\cot 21.4^\circ} \]
8. \[\frac{63.1 \sec 80^\circ}{\tan 55^\circ} \]
9. \[\frac{\sin 18^\circ \tan 20^\circ}{3.7 \tan 41^\circ \sin 31^\circ} \]
10. \[\frac{8.1 \tan 22.3^\circ}{\sin 62.4^\circ} \]
11. \[\frac{3.14 \sin 13.17^\circ \csc 32^\circ}{1.01 \cos 71.2^\circ \sin 15^\circ} \]
12. \[\frac{7.1 \pi \sin 47.6^\circ}{\sqrt{4.81 \cos 27.2^\circ}} \]

25. Solve for the unknowns in the following equations:
(a) \[\frac{\tan \theta}{27} = \frac{\tan x}{49} = \frac{\tan 33.2^\circ}{38} \]
(b) \[\frac{y}{\tan 24.2^\circ} = \frac{\tan \theta}{6.15} = \frac{\tan 17^\circ}{1.07} \]
(c) \[y = (407 \cot 82.88^\circ) \]
(d) \[y = \frac{17.2}{\tan 34.2^\circ} \]
(e) \[y = \frac{84.1 \tan 75^\circ}{27.4} \]
(f) \[y = \frac{9.32 \tan 17^\circ}{32.2} \]
(g) \[y = \frac{15.1 \cot 42^\circ}{10.7} \]
(h) \[y = \frac{4.77 \tan 21.2^\circ}{25.7} \]
(i) \[\tan \theta = \frac{472 \tan 11.75^\circ}{333} \]

*Hint: equate the expression to x and write the proportion
\[\frac{\sin 45.5^\circ}{\sqrt{4.81 \times 41.2 \times \cot 71.2^\circ}} = \frac{x}{\sqrt{16.3}} \]

**Hint: write the proportion
\[\frac{\sin 13^\circ}{\sqrt{4.81 \times \cos 27.2^\circ}} = \frac{x}{1.01} \]

** Hint: write the proportion
36. Relations between radians and degrees.

1 radian is \(\frac{180}{\pi} \) degrees or 57.296 (approximately) degrees. Hence to change \(r \) radians to degrees multiply \(r \) by \(\frac{180}{\pi} \) and to change \(d \) degrees to radians multiply \(d \) by \(\frac{\pi}{180} \). Thus \(\frac{\pi}{4} \) radian = \(\left(\frac{\pi}{4} \right) \left(\frac{180}{\pi} \right) \) = 45°, and 1.176 radians = 1.176 \(\frac{180}{\pi} \) degrees = 67.4° = 67°24'.

Also 35°36' (= 35.6°) = 35.6 \(\frac{\pi}{180} \) radian = 0.62 radian.

Also the following proportion holds true:

\[
\frac{r}{d} \quad \text{(number of radians)} \quad \frac{\pi}{180} \quad \text{(number of degrees)}
\]

Hence, opposite \(\pi \) on \(DF \) set 180 of \(CF \);
opposite radians on \(DF \) read degrees on \(CF \);
opposite degrees on \(CF \) read radians on \(DF \).

Obviously the \(F \) (folded) may be deleted from any line.

A short method using the gauge points on \(ST \) is explained in the next article.

Example. Find the number of degrees in 1.176 radians and the number of radians in 35.6°.

Solution.

Opposite \(\pi \) on \(DF \) set 180 of \(CF \);
opposite 1176 on \(DF \) read 67.4° on \(CF \);
opposite 356 on \(CF \) read 0.621 radian on \(DF \).

EXERCISES

1. Express the following angles in radians:
 (a) 45°. (b) 190°. (c) 22.5°.
 (d) 60°. (e) 120°. (f) 200°.
 (g) 90°. (h) 135°. (i) 300°.

2. Express the following angles in degrees and minutes:
 (a) π/3 radians. (b) π/12 radians. (c) 20π/3 radians.
 (d) 3π/4 radians. (e) 7π/8 radians. (f) 0.085 radians.

3. Express in radians by using proportion (17):
 (a) 45°. (b) 50.48°. (c) 10.23°. (d) 90.45°.
 (e) 80.6°. (f) 120.7°. (g) 5.73°. (h) 175.5°.

4. Assume each number to represent an angle in radians, use (17) to find each angle in degrees and minutes:
 (a) 0.811. (b) 0.296. (c) 0.370. (d) 2.96.
 (e) 0.873. (f) 0.356. (g) 2.89. (h) 1.738.

§37 Trigonometric functions of small angles. The approximate relation

\[
\sin \theta = \tan \theta = \theta \quad \text{(in radians)}
\]

is assumed to be true for slide rule purposes when \(\theta \) is less than 5.7°. Hence for slide rule purposes, when \(\theta \) is a small angle, \(\sin \theta \) or \(\tan \theta \) is equal to \(\theta \) expressed in radians. By using this fact and the relations (4) to (12) in §25, the trigonometric functions of angles near 0°, 90°, or 180° may be found.

In changing a small angle to radians, and therefore in finding its sine or tangent approximately, the gauge points on the \(ST \) scale save time. The number of minutes \(m = \frac{180 \times 60}{\pi} \) in a radian has been marked by a "minutes" gauge point on scale \(ST \) near the 2° division and the number of seconds \(s = \frac{180 \times 60 \times 60}{\pi} \) in a radian has been marked by a "seconds" gauge point on \(ST \) near the 1.2° division. Hence, to change \(M \) minutes or \(S \) seconds to radians divide \(M \) by the "minutes" gauge number \(m \) or divide \(S \) by the "seconds" gauge number \(s \); to change \(R \) radians to minutes or seconds multiply \(R \) by the "minutes" gauge number \(m \) or the "seconds" gauge number \(s \) respectively.

To approximate an answer for the purpose of placing the decimal point it is convenient to remember that 0.1° = .002 (2 zeros, 2) radian nearly, 1° = .0003 (3 zeros, 3) radian nearly, and 1" = .000005 (5 zeros, 5) radian nearly.

Thus 2°48' = 168° and
opposite 168 on \(D \) set "minutes" gauge point,
opposite index of \(C \) read 489 on \(D \).

Now approximately 168° = 168 (.0003) radians = 0.0504 radian.
Hence 2°48' = 0.0489 radian.

Also 39°17' = 39 × 60' + 17' = 2357'. Hence
opposite 2357 on \(D \) set "seconds" gauge point,
opposite index of \(C \) read 1143 on \(D \).

Now approximately 2357' = 2357 (.000005) radian = 0.0118 radian. Hence 39°17' = 0.01143 radian.

The formula is accurate to 3 figures for angles from 0° to almost 3°. The approximate variation from \(\theta \) when \(\theta = 0.1 \) radian (5º44') is .00017 for the sine and .00033 for the tangent.
To express 0.00744 radian in minutes and in seconds push right index of C to 744 on D
opposite the "minutes" gauge mark read 25.6 (25.6') on D,
opposite the "seconds" gauge mark read 1535 (1535'') on D.
The decimal points were placed in accordance with the approximations
\[\frac{0.007}{0.0003} = 23, \quad \frac{0.007}{0.00005} = 1400. \]

Example 1. Find \(\sin 15' \), \(\csc 15' \), \(\tan 15' \), \(\cot 15' \).

Solution. Opposite 15 on D draw "minutes" gauge mark,
opposite index of C read 436 on D,
opposite index of D read 229 on C.
Since \(15' = 0.0003 \) (15) radian nearly, \(15' = 0.00436 \) radian nearly.

Hence \(\sin 15' = \tan 15' = 0.00436 \) and \(\csc 15' = \cot 15' = \frac{1}{0.00436} = 229. \)

Example 2. Find \(\cos 89^\circ28' \), sec \(89^\circ28' \), tan \(89^\circ28' \), cot \(89^\circ28' \).

Solution. Using relations (4) to (10) of §25, we get
\(\cos 89^\circ28' = \sin 32' \), sec \(89^\circ28' = \csc 32' \), tan \(89^\circ28' = \cot 32' \), cot \(89^\circ28' = \tan 32' \).
Now proceeding as in Example 1, we get
\(\sin 32' = \tan 32' = 0.00931 \) and \(\csc 32' = \cot 32' = 107.4 \).
Hence \(\cos 89^\circ28' = \cos 89^\circ28' = 0.00931 \) and sec \(89^\circ28' = tan 89^\circ28' = 107.4 \).

EXERCISES

1. Using the "minutes" gauge mark change to radians:
 (a) 1'28'.
 (b) 50'.
 (c) 2'30'.
 (d) 2'40'.
2. Using the "seconds" gauge point change to radians:
 (a) 10'25''.
 (b) 58''.
 (c) 1'2'35''.
 (d) 1'35''.
3. Using the gauge points, change to minutes and to seconds the following angles in radians:
 (a) 0.00684.
 (b) 0.0797.
 (c) 0.000799.
 (d) 0.1248.
4. Find \(\sin 5' \), \(\tan 5' \), \(\csc 5' \) and \(\cot 5' \).
5. Find \(5'5'' \), \(\csc 5'5'' \) and \(\cot 5'5'' \).
6. Find \(\sin \alpha = 21' \), \(\sin 32' \), \(\sin 7' \), \(\sin 52'' \).
7. Find \(\cos 89^\circ45' \), sec \(89^\circ45' \), tan \(89^\circ45' \), and cot \(89^\circ45' \).
8. Find \(\cos \alpha, \sec \alpha, \tan \alpha, \cot \alpha \) of \(89^\circ59'19'' \).
9. Find \(\cos \alpha = 16' \), \(\sec 89^\circ58' \), \(\tan 89^\circ30' \), \(\cot 12' \).
10. \(250 \sin 23' \), \(250 \tan 19' \).
11. \(150 \cos 89^\circ40' \).
12. \(83 \sin 52'' \).
13. \(500 \tan 35'' \).

38. SUMMARY

The following tables summarize the methods of solving the triangles.

<table>
<thead>
<tr>
<th>Known</th>
<th>Any two parts other than two sides</th>
<th>Two legs other than (a, b, c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin A)</td>
<td>(\sin B = \sin \frac{A}{2})</td>
<td>(\csc \alpha = \frac{1}{\sin \alpha})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Known</th>
<th>Rule of (\sin) or (\cos) (\tan)</th>
<th>The proportion (\tan A = \frac{b}{a}) and the law of sines</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin A)</td>
<td>(\sin B = \sin \frac{A}{2})</td>
<td>(\csc \alpha = \frac{1}{\sin \alpha})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Known</th>
<th>Dropping a perpendicular and solving the two right triangles thus formed</th>
<th>Three parts, two of which are a side and the included angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(c = b + a - 2bc \cos A)</td>
<td>Three sides</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Known</th>
<th>Two sides and the included angle</th>
<th>Three sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(\sin \alpha = \frac{a}{c})</td>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
<td>(\sin \beta = \frac{b}{c})</td>
<td>(b)</td>
</tr>
</tbody>
</table>
39. Miscellaneous Exercises. Solve the following triangles

1. \(c = 80 \) ft., \(A = 20^\circ \), \(C = 90^\circ \).
2. \(b = 30 \) ft., \(a = 95 \) ft., \(B = 10^\circ \), \(C = 90^\circ \).
3. \(a = 50 \) ft., \(b = 30 \) ft., \(A = 50^\circ \), \(C = 90^\circ \).
4. \(a = 10 \) ft., \(b = 20 \) ft., \(C = 90^\circ \).
5. \(c = 10 \) ft., \(A = 45^\circ \), \(B = 45^\circ \).
6. \(a = 5 \) ft., \(b = 3 \) ft., \(C = 90^\circ \).

A force may be represented by a vector, the length of the vector representing the magnitude of the force, and the direction of the vector the direction of the force. In fact, many quantities defined by a magnitude and a direction can be represented by vectors.

In each of the following applications, two mutually perpendicular components of a vector are considered. Evidently these components may be thought of as the legs of a right triangle having as hypotenuse the vector itself.

For convenience the rule for solving a right triangle when two legs are given is repeated here.

Rule. To solve a right triangle for which two legs are given, to larger leg on \(D \) set proper index of slide, push hairline to smaller leg on \(D \), at the hairline read smaller acute angle of triangle on \(T \), draw this angle on \(S \) under the hairline, at index of slide read hypotenuse on \(D \).

Example 1. Find the magnitude and the angle of the vector representing the complex number \(3.6 + j 1.63 \) where \(j = \sqrt{-1} \).

Solution. If the numbers \(x \) and \(y \) be regarded as the rectangular coordinates of a point, the complex number \(x + jy \) is represented by the vector from the origin to the point \((x, y)\). Hence we must find \(R \) and \(\theta \) in Fig. 27. Therefore, in accordance with the italicized rule stated above,

- to 36 on \(D \) set right index of slide,
- push hairline to 163 on \(D \),
- at the hairline read \(\theta = 24.36^\circ \) on \(T \),
- draw 24.36° of \(S \) under the hairline,
- at index of slide read \(R = 3.95 \) on \(D \).

Example 2. A force of 26.8 lb. acts at an angle of 38° with a given direction. Find the component of the force in the given direction, and also the component in a direction perpendicular to the given one.

Solution. Denoting the required components by \(x \) and \(y \) (see Fig. 28), we write

\[
\frac{26.8}{\sin 38^\circ} = \frac{y}{\sin 90^\circ} = \frac{x}{\sin 52^\circ}
\]

make the corresponding settings, and read \(x = 21.1, y = 16.5 \).
Example 3. A certain circuit consists of a resistance $R = 3.6$ and an inductive reactance $X = 2.7$ in series. Find the impedance Z, the susceptance B, and the conductance G.

Solution. The quantities R, X, and Z have relations which may be read from Fig. 29. Conductance G and susceptance B are found from the relations

$$G = \frac{R}{R^2 + X^2}, \quad B = \frac{X}{R^2 + X^2},$$

or, since $Z = \sqrt{R^2 + X^2}$,

$$G = \frac{R}{\sqrt{R^2 + X^2} \sqrt{R^2 + X^2}}, \quad B = \frac{X}{\sqrt{R^2 + X^2} \sqrt{R^2 + X^2}},$$

From equations (a) we obtain

$$\frac{Z}{1} = \sin \theta, \quad \frac{B}{G} = \cos \theta. \quad (b)$$

First apply the italicized rule stated above to find Z and θ of Fig. 29, and then use the proportion principle to find B and G from (b).

Hence

To 36 on D set right index of slide,
push hairline to 27 on D,
at the hairline read $\theta = 36.9^\circ$ on T,
draw 36.9° slanted rightward on S under the hairline,
at index of slide read $Z = 4.5$ on D,
draw 45 of C opposite left index of D,
push hairline to 36.9° slanted rightward on S,
at the hairline read $B = 0.1333$ on D,
push hairline to 36.9° slanted leftward on S,
at the hairline read $G = 0.178$ on D.

EXERCISES

1. Find the magnitudes of the unknown vectors and of the unknown angles θ in Figs. 30, 31 and 32.

2. The rectangular components of a vector are 15.04 and 5.47 (see Fig. 33). Find the magnitude r and direction angle θ of the vector.

3. Find the magnitude and direction of a vector having as its horizontal and vertical components 18.12 and 8.45, respectively.

4. Find the horizontal and vertical components of a vector having magnitude 2.5 and making an angle of 10°15’ with the horizontal.

5. A force of magnitude 28.8 lb. acts at an angle of 68° with the horizontal. Find its horizontal component, and its vertical component.

6. A 12-inch vector and an unknown vector r have as a resultant a 10-inch vector which makes an angle of 28° with the 12-inch vector as shown in Fig. 34. Find the unknown vector r.

7. Find the magnitude and the angle of the vector representing the imaginary number $2.7 + j3.6$. Hint. Use Fig. 35.

8. Through what angle θ measured counter-clockwise must a vector whose complex expression is $-10 - j5$ be rotated to bring it into coincidence with the vector whose complex expression is $3 + j4$ (See Fig. 36.)

9. The complex expressions for two vectors (see Fig. 37) are $v_1 = 7 - j14$ and $v_2 = -6 - j8$. From the tip of v_2, a line is drawn perpendicular to v_1. Find the length m of this perpendicular, and the length n of the line from the origin to the foot of the perpendicular.

10. A certain circuit consists of a resistance of 8.24 ohms and an inductive reactance of 4.2 ohms, in series. Find the impedance, the susceptance, and the conductance. (See Example 3.)

11. Find the impedance, the susceptance, and the conductance of a circuit which consists of a resistance of 8.76 ohms and an inductive reactance of 11.45 ohms in series.
41. Applications. The solutions of many practical problems are obtained by dealing with rectilinear figures. In finding the length of a specified line segment of a rectilinear figure, the beginner is likely to read a number of lengths which are not needed. This may be well at first, but the efficient operator reads and tabulates only useful numbers. The following examples and solutions indicate efficient methods of finding desired parts of rectilinear figures.

Example 1. Find the line segment marked \(x \) in Fig. 38.

Solution. By using the law of sines, we write

\[
\frac{368}{\sin 39°} = \frac{y}{\sin 50°} = \frac{x}{\sin 28°}
\]

and then find \(x \) by making the following settings:
- push hairline to 368 on \(D \),
- draw 39° of \(S \) under the hairline,
- push hairline to 65° on \(S \),
- draw 50° of \(S \) under the hairline,
- push hairline to 28° on \(S \),
- at the hairline read \(x = 325 \) on \(D \).

The value of \(y \) was not tabulated, but it could have been read at the hairline on scale \(D \) when the hairline was set to 65° of scale \(S \). Also it was not necessary to write the ratios; for, when one remembers that each ratio is that of a side of a triangle to the sine of the opposite angle, he has no difficulty in perceiving, from an inspection of the figure, the settings to be made.

Generally it is necessary to compute the magnitudes of a number of angles before the slide rule computation can be carried out. This process is illustrated in Example 2.

Example 2. Find the length of the side marked \(z \) in Fig. 39(a).

Solution. To find the length of the side marked \(z \) in Fig. 39(a), first draw Fig. 39(b), compute the angles shown in the figure, and push the hairline to 289 on \(D \),
- draw 77° (= 180° - 103°) of \(S \) under the hairline,
- push hairline to 32° on \(S \),
- draw 38° of \(S \) under the hairline,
- push hairline to 65° on \(S \),
- draw 45° of \(S \) under the hairline,
- push hairline to 77° on \(S \),
- at the hairline read \(z = 319 \) on \(D \).

In some problems it is necessary to perform some of the earlier settings in a chain of settings, compute some parts on the basis of the results, make some more settings, compute more parts, etc. This process is illustrated in Example 3.

Example 3. Find the side \(x \) of the inscribed quadrilateral shown in Fig. 40(a).

Solution. Angles \(Q \) and \(S \) are right angles because each is inscribed in a semi-circle. Knowing two legs of right triangle \(PQI \) we first find its hypotenuse and then deal with triangle \(PSR \). Accordingly, to 184 on \(D \) set left index of slide,
- push hairline to 781 on \(D \),
- at the hairline read \(A \) [Fig. 40(b)] = 23° on \(T \),
- draw 23° of \(S \) under the hairline,
- compute \(B \) [Fig. 40(b)] = 65° - \(A \) = 42°,
- exchange indices (see §6),
- push hairline to 42° on \(S \),
- at the hairline read \(x = 13.37 \) on \(D \).

The following example illustrates more in detail the same method of procedure.

Example 4. An engineer in a level country wishes to find the distance between two inaccessible points \(C \) and \(D \) and the direction of the line connecting them. He runs the line \(AB \) [Fig. 41(a)] due north and measures the side and angles as indicated. Using his data solve his problem.
42. Miscellaneous Exercises.
1. Find the length of the line segment \(BC \) in Fig. 48.
2. Find the length of the line segment marked \(u \) in Fig. 39a.
3. In Fig. 42 find the length of the line segment marked \(x \).
4. Line segment \(AB \) in Fig. 43 is horizontal and \(CD \) is vertical. Find the length of \(CD \).
5. In the statement of Ex. 4, replace "Fig. 43" by "Fig. 44" and solve the resulting problem.

6. Find the length of the line segment marked \(x \) in Fig. 45.
7. If in Fig. 46 line segment \(BD \) is perpendicular to plane \(ABC \), find its length.

8. A tower and a monument stand on a level plane. (See Fig. 47.) The angles of depression of the top and bottom of the monument viewed from the top of the tower are 13° and 31° respectively; the height of the tower is 145 ft. Find the height of the monument.

9. The captive balloon \(C \) shown in Fig. 48 is connected to a ground station \(A \) by a cable of length 842 ft. inclined 65° to the horizontal. In a vertical plane with the balloon and its station and on the opposite side of the balloon from \(A \) a target \(B \) was sighted from the balloon on a level with \(A \). If the angle of depression of the target from the balloon is 4° find the distance from the target to a point \(C \) directly under the balloon.

10. A lighthouse standing on the top of the cliff shown in Fig. 49 is observed from two boats \(A \) and \(B \) in a vertical plane through the lighthouse. The angle of elevation of the top of the lighthouse viewed from \(B \) is 16° and the angles of elevation of the top and bottom viewed from \(A \) are 40° and 23°, respectively. If the boats are 1320 ft. apart find the height of the lighthouse and the height of the cliff.

11. Fig. 50 represents a 600 ft. radio tower. \(AC \) and \(AD \) are two cables in the same vertical plane anchored at two points \(C \) and \(D \) on a level with the base of the tower. The angles made by the cables with the horizontal are 44° and 58° as indicated. Find the lengths of the cables and the distance between their anchor points.

12. Two fixed objects, \(A \) and \(B \) of Fig. 51, were observed from a ship at point \(S \) to be on a straight line passing through \(S \) and bearing N 15° E. After sailing 5 miles on a course N 42° W the captain of the ship found that \(A \) bore due east and \(B \) bore N 40° E. Find the distance from \(A \) to \(B \).
CHAPTER VI

LOGARITHMS AND THE SLIDE RULE

43. Construction of the D scale. Perhaps the simplest explanation of the construction of the scales of the slide rule can be made in terms of logarithms. Since nearly all the scales are constructed by the same method, a detailed consideration of the construction of the D scale will indicate how most of the other scales are made.

\[\text{Fig. 1.} \]

To construct a D scale, first reproduce the L scale (see Fig. 1). Since it is a uniformly marked and numbered 10-inch scale, it may be used for finding lengths in terms of ten inches as the unit of measure. Next draw a line AB parallel to the L scale. Opposite 0 on L make a mark on AB and letter it 1. This mark will be referred to as the left index. Opposite \(\log^* 2 \) (= 0.3010 approximately) on L make a mark on AB and letter it 2. Similarly opposite \(\log 3 \) (= 0.4771 approximately) on L make a mark and letter it 3, etc., until a mark has been made on AB for each of the digits 1 to 9. Instead of marking the right index 10 as we should expect, since \(\log 10 = 1.0 \), number it 1. This gives the ten primary divisions. The other division marks are located in a similar manner. Thus to each division mark is associated a number and this mark is situated at a distance from the left index equal to the mantissa of the logarithm of that number.

\(^* \) Nominally the D scale is 10 inches long. Its exact length however is 25 centimeters. On the 20-inch rule the D scale is 50 centimeters long.

\(^* \) The symbol \(\log N \) will be understood to mean the mantissa of \(\log_10 N \) unless otherwise specified.

44. Accuracy. We write

\[\log_10 N = d \]

where \(N \) represents the number associated with any specified mark on the D scale and \(d \) is the distance of the mark from the left index. By applying calculus to equation (1) we easily prove that for small errors in \(d \)

Relative error in \(N = \frac{\text{error in } N}{N} = 2.3026 \text{ (error in } d). \]

Now the error in \(d \) is the error made in making the reading. The right-hand member is independent of \(N \). Therefore the relative error in the number read does not depend on its size and hence is the same for all parts of the scale. Near the left end of the D scale a careful reading should be in error by no more than 1 in the fourth place i.e. the relative error should be no greater than 1 in 1000. Hence the error of a reading made on any part of the D scale should not be much greater than 1 in 1000 or one tenth of one per cent.

45. Multiplication and division. The middle part of the rule which may be moved back and forth relative to the other part is referred to as the slide; the outer or fixed part of the rule is called the body. The D scale is located on the body and the C scale is the same as the D scale except that it is located on the slide. Hence the C scale may be moved relative to the D scale, and we are able to add distances as indicated in Fig. 2.

From this figure and the considerations of §43, it appears that

\[\log P = \log N + \log M. \]

But the sum of two logarithms is equal to the logarithm of their product. Accordingly we get from (3)

\[\log P - \log MN, \text{ or } P = MN. \]
Hence Fig. 2 shows the setting to be used for multiplying numbers.

From Fig. 3 and the considerations of §43 it appears that

$$\log P = \log M - \log N,$$

or since

$$\log M - \log N = \log (M/N),$$

we have

$$\log P = \log \frac{M}{N},$$

and

$$P = \frac{M}{N}.$$ \hspace{1cm} (6)

Thus Fig. 3 shows the setting to be used for dividing numbers.

The rule for multiplication §5 and the rule for division §7 are justified by the principles set forth above.

Observe that when the slide is set with M and N as opposites on the C and D scales, any other pair of opposites on the C and D (or CF and DF) scales have the same ratio P. The proportion principle is based on this fact.

46. The inverted scales. The CI scale is constructed in the same manner as the D scale except that the distances are measured leftward from the right index, and the numbers associated with the primary division marks are slanted leftward.

Let N be the number associated with a position on the C scale and K the number on the CI scale associated with the same position.

Then,

$$\log N + \log K = 1.$$ \hspace{1cm} (46)

Hence we may write

$$\log K = 1 - \log N = \log \frac{10}{N},$$

or

$$K = \frac{10}{N}.$$ \hspace{1cm} (46)

Therefore, except for the position of the decimal point, K is the reciprocal of N. In other words, when the hairline is set to a number on the CI scale, it is automatically set to the reciprocal of that number on the C scale.

Fig. 4 indicates how multiplication may be accomplished by using the CI scale in conjunction with the D scale while Fig. 5 indicates how division may be accomplished. From Fig. 4, we have

$$\log P = \log M + \log N,$$

or $P = MN$,

and from Fig. 5, we have

$$\log P = \log M - \log N,$$

or $P = M/N$.

47. The A scale, and the K scale. The A scale is constructed by the method used in the case of the D scale except that the unit of measure employed is 5 inches instead of 10 inches and the scale is repeated.
When the hairline is set to a number \(N \) on the \(A \) scale it is automatically set to a number \(M \) on the \(D \) scale, see Fig. 6. The two lengths marked \(\log N \) and \(\log M \) in the figure are equal. However since the unit in the case of \(\log N \) is half the unit in the case of \(\log M \), we have

\[
\log M = \frac{1}{2} \log N = \log N^{1/2} = \log \sqrt{N},
\]

and

\[
M = \sqrt{N}.
\]

Hence, a number of scale \(D \) is the square root of the number opposite on scale \(A \).

The \(K \) scale is constructed by the method used in the case of the \(D \) scale except that the unit of measure employed is one third of 10 inches instead of 10 inches. The argument used above may be employed to show that when the hairline is set to a number on the \(K \) scale it is automatically set to the cube root of the number on the \(D \) scale.

48. The trigonometric scales. The general plan of constructing the \(S \) (sine) scale is the same as that for the \(D \) scale. Here again 10 inches is taken as the unit of measure. To each division mark on the \(S \) scale is associated an acute angle (slanted rightward) such that the distance of the division from the left index is equal to the mantissa of the logarithm of the sine of the angle. Thus Fig. 7 shows the division marked 25 at a distance from the left index of the mantissa of \(\log \sin 25^\circ \). Hence when the hairline is set to an angle on the sine scale, it is automatically set to the sine of the angle on the

\[
\text{Fig. 6.}
\]

\[
\text{Fig. 7.}
\]

\[
\text{Fig. 8.}
\]

\[
\text{Fig. 9.}
\]

\[
C \text{ scale. Fig. 8 shows a setting for finding } P = \frac{16 \sin 68^\circ}{\sin 27^\circ}.
\]

From this figure it appears that

\[
\log P = \log 16 - \log \sin 27^\circ + \log \sin 68^\circ = \log \frac{16 \sin 68^\circ}{\sin 27^\circ},
\]

or

\[
P = \frac{16 \sin 68^\circ}{\sin 27^\circ}.
\]

Since the slide rule does not take account of the characteristics of the logarithms, the position of the decimal point is determined in accordance with the result of a rough approximation.

If the learner will note that the angles designated by numbers slanted leftward are the complements of the angles designated by numbers slanted rightward, and remember that the distance from a division on the \(C \) scale to the right index is the logarithm of the reciprocal of the number represented by the division, and also that

\[
\sin \theta = \cos (90^\circ - \theta),
\]

\[
\csc \theta = 1/\sin \theta,
\]

\[
\sec \theta = 1/\cos \theta,
\]

he will easily see the relations indicated in Fig. 9 for the representative angle \(25^\circ \).
The T scale is constructed by taking 10 inches as the unit of measure and associating to each division mark on it an acute angle less than or equal to 45° such that the distance of the mark from the left index is equal to the mantissa of the logarithm of the tangent of the angle. Recalling that
\[
\cot(90^\circ - \theta) = \tan \theta = 1/\cot \theta,
\]
the student will easily see the relations indicated in Fig. 10 for the representative angle 25°.

The facts illustrated in Figs. 9 and 10 are the basis of the following rule:

If the hairline be set to an angle on a trigonometric scale, it is automatically set to the complement of this angle. One of these angles is expressed in type slanted rightward, the other in type slanted leftward. From what has been said it appears that we read, at the hairline on the C scale or on the CI scale, a figure expressing a direct function (sine, tangent, secant) by reading a figure with the same slant as that representing the angle, a co-function (cosine, cosecant, cotangent) by reading a figure with the opposite slant. In other words, associate direct function with like slants, co-function with opposite slants.

The S scale applies to angles ranging from $5^\circ 44' (5.74^\circ)$ to 90°; the sines of these angles range from 0.1 to 1 as indicated by its legend. Any angle in the range from $35' (0.583^\circ)$ to $5^\circ 44'$ has a sine approximately equal to its tangent. The ST scale is related to the angles ranging from $35'$ to $5^\circ 44'$ just as the S scale is related to the angles ranging from $5^\circ 44'$ to 90°. Since any angle greater than $35'$ but less than $5^\circ 44'$ has its sine approximately equal to its tangent, the ST scale may be used for tangents as well as for sines.
HISTORICAL NOTES ON THE SLIDE RULE

Since logarithms are the foundation on which the slide rule is built, the history of the slide rule rightly begins with John Napier of Merchiston, Scotland, the inventor of logarithms. In 1614 his "Canon of Logarithms" was first published. In presenting his system of Logarithms, Napier sets forth his purpose in these words:

"Seeing there is nothing (right well beloved Students of Mathematics) that is so troublesome to mathematical practice, nor doth more molest and hinder calculators, than the multiplications, divisions, square and cubical extractions of great numbers, which besides the tedious expense of time are for the most part subject to many slippery errors, I began therefore to consider in my mind by what certain and ready art I might remove those hindrances."

From Napier's early conception of the importance of simplifying mathematical calculations resulted his invention of logarithms. This invention in turn made possible the slide rule as we know it today. Other important milestones in slide rule history follow.

In 1620 Edmund Gunter, of London, invented the straight logarithmic scale, and effected calculation with it by the aid of compasses.

In 1630 William Oughtred, the English mathematician, arranged two Gunter logarithmic scales adapted to slide along each other and kept together by hand. He thus invented the first instrument that could be called a slide rule.

In 1675 Sir Isaac Newton solved the cubic equation by means of three parallel logarithmic scales, and made the first suggestion toward the use of an indicator.

In 1722 John Warner, a London instrument dealer, used square and cube scales.

Circular slide rules and rules with spiral scales were made before 1733, but their inventors are unknown.

In 1775 Thomas Everard, an English Excise Officer, invented the logarithmic scale and adapted the slide rule to gauging.

In 1815 Peter Roget, an English physician, invented a Log Log scale.

In 1859 Lieutenant Amédée Mannheim, of the French Artillery, invented the present form of the rule that bears his name.

Cylindrical calculators with extra long logarithmic scales were invented by George Fuller, of Belfast, Ireland, in 1878 and Edwin Thacher, of New York, in 1881. These calculators are still being manufactured today.

A revolutionary slide rule construction, with scales on both the front and back surfaces of body and slide and with a double faceted indicator referring to all scales simultaneously, was patented in 1891, by William Cox, who was mathematical consultant to Keuffel & Esser Co. With the manufacture of Mannheim rules and this new rule, K & E became the first commercial manufacturer of slide rules in the United States. These had previously all been imported from Europe.

Folded scales CF, DF and CIF were put on slide rules about 1900, to reduce the amount of movement and frequency of resetting the slide. At first the scales were folded at \(\sqrt{10}\) but K & E later folded such scales at \(\pi\) so that \(\pi\) could be used as a factor without a resetting. Log Log scales in three sections were put on K & E rules about 1909.

The Parsons invention of about 1919, which included special scales for finding the hypotenuse of a right triangle was incorporated in a rule made in Japan. This rule later included a Guerdemannian scale, patented by Okura, enabling the user to read hyperbolic functions.

A scale referring to the A or B scales to give the logarithms of the co-logarithms of decimal fractions was introduced on K & E slide rules about 1924. Puchstein's scales for hyperbolic functions, patented in 1923, were put on commercial K & E slide rules in 1929. The trigonometric scales were divided into degrees and decimals of a degree, thus making it possible to eliminate all non-decimal sub-divisions from the rule.

K & E introduced a slide rule (patented in 1939) in which all of the trigonometric scales are on the slide and refer to the full length C and D scales. In solving vector problems on this rule or other similar problems involving continuous operations and progressive manipulation, only the final answer needs to be read.
In 1947, on the basis of Bland’s invention, the scales of the logarithms of the co-logarithms of decimal fractions were referred to the C and D scales, correlated with the Log Log scales and also with all of the other scales of the rule, thereby increasing the power of the slide rule by simplifying the solution of exponential or logarithmic problems, the determination of hyperbolic functions, reciprocals, etc.

It was about 1910 when the slide rule first began to come into general use in the United States. In the years that followed, K & E introduced many improvements in the rigidity of frame, indicator design, the precision of graduations, as well as a variety of new scale arrangements. All these have contributed to the wide popularity of the slide rule and its many uses in the mathematics of science and engineering, as well as for calculations of all kinds in business and industry.

Many types of slide rules have been devised and made in small quantities for the particular purposes of individual users. Rules have likewise been made specially for chemistry, surveying, artillery ranging, steam and internal combustion engineering, hydraulics, reinforced concrete work, air conditioning, radio and other special fields. However, the acceptance of such rules has been relatively limited.

The slide rule has a long and distinguished ancestry. The rule described in this manual incorporates the most valuable features that have been invented from the beginning of slide rule history, right up to date.

ANSWERS

Answers read between 2 and 4 on the C scale or D scale contain four significant figures, the last one being 0 or 5. Hence such answers have the fourth significant digit accurate to the nearest 5.

§5. Page 8	1. 6	4. 9.1	7. 49.8	10. 0.0826	13. 9.87	2. 7	5. 0.975	8. 339.5	11. 3.223	14. 3.085
§6. Page 9	3. 10	6. 0.92	9. 47.0	12. 0.836						
§7. Page 10	1. 15	5. 0.001322	6. 243.5	13. 170.5						
2. 15.77	6. 1737	10. 57.1	14. 5639							
3. 3525	7. 9.98	11. 0.1621	15. 6890							
4. 42.1	8. 1341	12. 0.2065	16. 2879							
§8. Pages 11, 12	1. (a) 1576	(c) 220%								
(b) 2.80	(d) 2.725%									
3. (a) 17.9 mi.	(c) 178.9 mi.									
(b) 4.59										
2. (a) 26.1%	(c) 2140 mi.									
(b) 64.4%	(d) 225.5 hrs.									
§9. Page 14	1. 38.7	5. 0.00337								
2. 8.35	6. 13.970	10. 2.355								
3. 0.0000632	7. 1566	11. 0.0414								
4. 3400	8. 0.02335	12. 2460								
§11. Page 18	1. \(x = 43.3\)	9. \(x = 0.1013\)								
2. \(x = 160.4\)	\(y = 0.0769\)									
3. \(x = 284.5\)	\(y = 3.965\)									
4. \(x = 5.22\)	\(y = 0.984\)									
5. \(x = 2.38, \ y = 31.85\)	\(y = 0.2715\)									
6. \(x = 51.7, \ y = 3375\)	\(y = 1.315\)									
7. \(x = 106.2\)	\(y = 1.525\)									
\(y = 30.35\)	\(y = 37.8\)									
\(y = 41.8\)	\(y = 69.5\)									
§12. Page 20	1. 13.71	5. 0.5905								
2. 23.0	6. 9.46	10. 0.1265								
3. 85.0	7. 42.0	11. 104.6								
4. 48.7	8. 3.14	12. 4.07	13. 9.68	14. 47.6						
ANSWERS

Page 21, 22

1. **167.6 cm.**
2. **0.672 m.**
3. **720 lb.**
4. **2274.5 lb.**
5. **25,750 watts**
6. **28.6 in., 584 in.**
7. **62.7 lb. per sq. in.**
8. **6.12 lb. per sq. in., 7.35 lb. per sq. in., 24.5 lb. per sq. in.,**
 21.6 cu. in., 33.4 cu. in., 79.9 cu. in., 183.8 cu. in.

Page 23

1. **1.0625, 0.00385, 1.358, 15.38**
2. **0.0075, 0.0541, 0.01490**
3. **199.5, 8.55**

Page 25

1. **x = 16.98, y = 12.74**
2. **x = 0.0640, y = 1.145**
3. **x = 154.3, y = 6850**
4. **x = 0.00247, y = 0.945**
5. **z = 0.0481**
6. **z = 11.07**

Page 28

1. **11.2**
2. **2.355**
3. **9.00111**
4. **0.001155**
5. **1.512**
6. **1.015**

Page 29

1. **1.792, 3720, 5620, 7920, 537,000, 204,000, 4.33, 3.07, 0.1116, 0.00012679, 0.908, 27,800,000, 2.24 × 10^4**

Page 31

1. **2.83, 3.46, 4.12, 9.43, 2.98, 20.8, 0.943, 85.3, 0.252, 0.00797, 252, 316**
2. **(a) 231 ft.**
3. **(a) 18.05 ft.**

Page 32

1. **24.2**
2. **0.416**
3. **8.54**
4. **0.0098**
5. **(a) 5.94 ft^2**
6. **(a) 37.6 ft^2**

Page 34

1. **64.2**
2. **114.1**

Page 35

1. **9.25, 32.8, 238,000, 422,000,**
2. **705,000, 3.94 × 10^4, 0.00925, 29.2,**
3. **0.1966, 0.424, 0.914, 44.7, 255,**
4. **5.39, 0.00000373, 0.84, 1.46 × 10^4,**
5. **5.71 × 10^9, 2.86**

Page 36

1. **2.19**
2. **30.9**
3. **54.3**
4. **0.974**
5. **1.52**
6. **0.0577**
7. **43,100**
8. **1.745**
9. **1.156**
10. **1.193**
11. **90.7**
12. **1.281 × 10^8**
13. **20.329**
14. **17.503**
15. **18.290**
16. **19.0544**
17. **20.329**

Page 38

1. **1.515, 0.814, 5.991, 9.830-10, 8.022-10, 6.615-10,**
2. **1.86, 9.427-10, 7.904-10, 2.635**

Page 44

1. **(a) 0.5**
2. **(a) 0.016**
3. **(a) 0.561**
4. **(a) 30°**
5. **(a) 60°**
6. **(a) 61°**
7. **(a) 1.775°**
8. **(a) 89.14°**

Page 46

1. **(a) z = 6.10, (b) 0 = 54°, (c) z = 0.34, (d) 0 = 4.92°**
2. **(a) 2.5**
3. **(a) 5.86°**
4. **(a) 35.4**
5. **(a) 0.978**

Page 49

1. **C = 75°**
2. **C = 55°**
3. **C = 123.2°**
4. **C = 55.34°**
5. **B = 51.33°**
6. **A = 21.17°**
7. **A = 28°**
8. **B = 46.5°**
9. **A = 27.07°**
10. **B = 55.3°**
11. **A = 60.1°**
12. **B = 29.9°**
13. **A = 29.9°**
ANSWERS

§29. Page 49

17. $B = 35.3^\circ$
 $C = 84.7^\circ$
 $a = 138$
 $b = 30.5$
 $a = 117$
 $b = 18.57$
18. $A = 87.8^\circ$
 $B = 31.35^\circ$
 $C = 41.1^\circ$
 $b = 4.79$
 $a = 68.43^\circ$
 $b = 0.3245$
 $C = 53.1^\circ$
 $a = 0.076$
20. $B = 28.6^\circ$
 $C = 248$
 $C = 100.83^\circ$
 $c = 1205$ yd.
21. $A = 17.9^\circ$
 $B = 3.31^\circ$
 $C = 116.69^\circ$

§30. Page 51

2. (a) 13.5°
 (b) 38.15°
 (c) 42.69°
 (d) 28.37°
 (e) 3.4°
 (f) 4.7°
 (g) 22.36°
 (h) 2.465°
 (i) 0.585°
 (j) 0.025°
 (k) 37.91°
 (l) 0.15°
 (m) 61.85°
 (n) 47.40°
 (o) 61.63°
 (p) 86.6°
 (q) 50.3°
 (r) 66.64°
 (s) 87.53°
 (t) 89.145°
 (u) 69.5°
 (v) 15.05°
 (w) 12.09°
 (x) 3.37°
 (y) 44.15°
 (z) 39.05°

§31. Page 53

1. $A = 31.35^\circ$
 $B = 58.65^\circ$
 $C = 23.65^\circ$
 $e = 499$
 $c = 39.5^\circ$
 $c = 30.5^\circ$
 $b = 135.8$
 $c = 44$
3. $A = 65^\circ$
 $B = 25^\circ$
 $c = 55.2$
 $e = 10.50^\circ$

§32. Page 55

1. $A = 119.9^\circ$
 $B = 31.1^\circ$
 $C = 78.8^\circ$
 $a = 52.6$
 $a = 4.32$
 $b = 0.0828$
 $b = 218$ ft.
2. $A = 49.05^\circ$
 $B = 100.95^\circ$
 $C = 77.2^\circ$
 $b = 104$
 $b = 19.8$
 $c = 14.99$
3. $A = 55^\circ$
 $B = 46.4^\circ$
 $C = 13.38^\circ$
 $a = 285$
 $b = 7.43$

§33. Page 57

1. $A = 106.77^\circ$
 $B = 46.0^\circ$
 $C = 23.33^\circ$
 $A = 27.35^\circ$
 $B = 143.1^\circ$
 $B = 50.4^\circ$
 $B = 68.2^\circ$
 $a = 160.7$ yd.
2. $B = 66.1^\circ$
 $A = 70.3^\circ$
 $C = 99.1^\circ$
 $c = 30.8$
 $C = 134.7^\circ$
 $C = 67^\circ$
 $C = 9.7^\circ$
7. $p = 3.13$; (a) none, (b) 2, (c) 1

§34. Page 59

1. $B_1 = 58.5^\circ$
 $B_1 = 75.3^\circ$
 $c_1 = 18.6$
 $d = 28.3$
 $B_2 = 113.9^\circ$
 $B_2 = 17.9^\circ$
 $c_2 = 10.48$
 $a = 10.51$
2. $B_1 = 16.72^\circ$
 $A_1 = 69^\circ$
 $A_1 = 147.42^\circ$
 $c_1 = 15.5$
 $d = 9.63$
 $c_1 = 21.85$
7. $p = 3.13$; (a) none, (b) 2, (c) 1

§35. Page 61

1. $A = 30.5$
 $A = 7.52$
 $A = 13.23$
 $A = 19.38$
2. $B = 0.36$
 $B = 25.45$
 $B = 14.72$
 $B = 26.00$
3. $C = 9.0679$
 $C = 15.425$
 $C = 21.0752$
 $C = 22.50$
4. $a = 42.2^\circ$
 $a = 9.284$
 $a = 12.57$
 $a = 24.0422$
5. $y = 24.14^\circ$
 $y = 0.0731$
 $y = 25.3$
 $y = 25.3$
6. $g = 40.2^\circ$
 $g = 40.2^\circ$
 $g = 4.48^\circ$
 $g = 4.48^\circ$

§36. Page 62

1. (a) 0.758
 (b) 1.047
 (c) 1.571
 (d) 3.14
 (e) 0.805
 (f) 2.36
 (g) 0.393
 (h) 3.49
2. (a) 60°
 (b) 135°
 (c) 2.5°
 (d) 204°
 (e) 176.4°
 (f) 0.1
 (g) 1.579
 (h) 3.065
3. (a) 0.845
 (b) 1.407
 (c) 0.881
 (d) 2.11
 (e) 0.178
4. (a) 35°
 (b) 50°
 (c) 15.24°
 (d) 204°
 (e) 21.2°
 (f) 165.6°
 (g) 109.6°
 (h) 99.6°

ANSWERS

§37. Page 64

1. (a) 0.0247 (b) 0.01454 (c) 0.0436 (d) 0.0465
2. (a) 0.00303 (b) 0.0002812 (c) 0.1820 (d) 0.000543
3. (a) 23.5', 141" (b) 274°, 16.440" (c) 2.75', 165"
 (d) 429°, 25.750"
4. 0.001454, 0.001454, 688, 688
5. 0.0000242, 0.0000242, 41,300, 41,300
6. (a) 0.0611 (b) 0.001551 (c) 0.00204 (d) 0.000252
7. 0.00436, 0.00229, 0.00436
8. 0.001988, 5030, 5030, 0.001988
9. (a) 12.890 (b) 17.119 (c) 114.6 (d) 236.5
10. 1.673 12. 0.873 14. 0.848 16. 20
11. 0.232 13. 0.0209 15. 5.40 17. 0.04

§39. Page 66

1. $B = 70^\circ$ 6. $A = 74.6^\circ$ 11. $A = 54.5^\circ$
 $a = 27.4$ 7. $B = 47.8^\circ$ 12. $B = 47.8^\circ$
 $b = 53.2$ 8. $C = 57.6^\circ$ 13. $a = 3320$
 $c = 45.8$ 9. $B = 50.5$ 14. $b = 54.6$
 $c = 50.5$ 10. $B = 50.5$ 15. $c = 7480$

2. $B = 80^\circ$ 16. $A = 89^\circ$
 $a = 5.29$ 17. $A = 42.8^\circ$
3. $B = 10^\circ$ 18. $A = 45.2^\circ$
 $a = 5.29$ 19. $A = 6.8^\circ$

3. $B = 15^\circ$ 20. $A = 50.8^\circ$
 $a = 5.29$ 21. $B = 72^\circ$
4. $B = 30.3^\circ$ 22. $a = 50.8^\circ$
 $a = 5.29$ 23. $B = 101.4^\circ$
5. $B = 60.5^\circ$ 24. $c = 50.8^\circ$
 $B = 60.5^\circ$ 25. $B = 26.2$ sec.

1. $z = 35.8, y = 19.36$ 5. $x = 10.79$ lb.
 $r = 32.4, \theta = 55.6^\circ$ 6. $y = 26.7$ lb.
 $w = 18.0, \theta = 43.2^\circ$ 7. $G = 0.0993$
 $x = 10.79, \theta = 27^\circ$

INDEX

A

Accuracy, 6, 75
Ambiguous case, 58
Antilogarithm, 39
Applications, 10, 70, 81
Area of circle, 32

B

Body, definition of, 7
Historical notes, 82

C

Characteristic, 39
Circle, area of, 32
Combined operations, 25, 33, 36, 59
Complimentary Angles, 40
Complex numbers, 67
Construction of the slide rule, 7, 6, 74
Cosecant, 40, 52
Cosine, 40, 43, 56
Cosines, law of, 56
Cotangent, 40, 50
Cubes, cube roots, 35, 78

D

Degrees to radians, 62
Division, 9, 75

E

Equivalents, 21
Error, relative, 75
Exponents, see Powers

M

Mantissa, 39, 74
Minutes gauge point (‘), 63
Multiplication, 7, 75

91
INDEX

O
Oblique triangles
 ambiguous case, 58
 law of cosines applied to, 56
Opposite, definition of, 7

P
Percentage, 10

Proportions, use of, 15
 forming from equations, 19
 involving CI scale, 23
 trigonometric, 40

R
Radians to degrees, 62

Rates, 10
Reading the scales, 3
Reciprocals, 22, 40,

Right triangle,
 relation in 40
 solution of 48
 two legs given, 52

S
Scales,
 A and B, 29, 77
 C, 7
 D, 3, 74
 CP and DF, 12

CI, 22
K, 35, 77
L, 39, 74

S and ST, 41, 51, 78
T, 50, 51, 78
Secant, 40, 52
Seconds gauge point (*), 63
Sine, 40, 41
 small angles, 63
Sines, law of, 46
 application of, 46, 52, 58
Slide, definition of, 7
Small angles, 63
Squares, 29, 78
Square roots, 30, 78
Supplementary angles, relations
 between, 40

T
Tangents, 40, 50
 law of, 55
 small angles, 63
Triangles, solution of, 65
Trigonometry, 40
Trigonometric formulas, 40
 definitions, 49
 scales, 41, 50, 78
 summary, 65

V
Vectors, 66